

Center for Advancing Research in Transportation Emissions, Energy, and Health

Use and Applications of Low-cost Air Quality Sensors

Andrea Polidori, PhD

Advanced Monitoring Technologies Manager South Coast Air Quality Management District, Diamond Bar, California

- Established in July 2014
- Fully funded by SCAQMD
- Main Goals & Objectives

 Provide guidance & clarity
 Promote successful evolution and use of sensor technology
 Minimize confusion
- Sensor Selection Criteria
 Commercially available
 - Optical
 - Electrochemical
 - Metal oxide
 - $_{\odot}$ Real- or near-real time
 - $_{\odot}$ Criteria pollutants & air toxics

Field Testing

Started in September, 2014
 40+ sensors evaluated to date

> Approach

Sensor tested in triplicates
Two month deployment
< ~ \$2,000: purchase
> ~ \$2,000: lease or borrow

Location

Rubidoux station (main)

- Inland site
- Fully instrumented

Aerosol Test

Laboratory Testing

Gas Test

Laboratory Testing (cont.)

T and RH controlled: T (0-50 °C); RH (5-95%)

Particle testing

- Particle generation systems
- Particle monitors: mass concentration and size distribution

Gas testing

- Gas generation / dilution system
- Gas monitors: CO, NO_X, O₃, SO₂, H₂S, CH₄/NMHC, and **VOCs**

www.aqmd.gov/aq-spec

- NEW! Dylos DC1700-PM Field Evaluation (posted, 11/15/18)
- 2017 Progress Report: U.S. EPA STAR Grant @ South Coast AQMD (posted, 11/6/18)
- Article by Hagler et al. in Environmental Science & Technology
- Article by Papapostolou et al. in Atmospheric Environment

- Evaluate the performance of commercially available "low-cost" air quality sensors in both field and laboratory settings
- Provide guidance and clarity for ever-evolving sensor technology and data interpretation
- · Catalyze the successful evolution, development, and use of sensor technology

Sensor Selection Criteria

- The sensor shall have potential for near-term use.
- The sensor shall provide real- or near-real time measurements.
- The sensor shall measure one or more of the National Ambient Air Quality Standards (NAAQS) criteria pollutants, air toxics, pollutants of concern and nonair toxics. Examples of the targeted gases and particles are carbon monoxide (CO), ozone (O₂), nitrogen oxides (NO₂), particulate matter (PM), volatile organic compounds (VOCs), hydrogen sulfide (H₂S) and methane (CH₄).
- The market cost of the sensor shall be less than \$2,000.
- Turnkey products will be tested first.

www.aqmd.gov/aq-spec

			PM	Ser	nsors		
Sensor Image	Manufacturer (Model)	Туре	Pollutant(s)	Approx. Cost (USD)	*Field R ²	*Lab R ²	Summary Report
	AethLabs (microAeth)	Optical	BC (Black Carbon)	~\$6,500	$R^2 \sim 0.79$ to 0.94		
0	Air Quality Egg (Version 1)	Optical	PM	~\$200	$R^2 \sim 0.0$		
	Air Quality Egg (Version 2)	Optical	PM	~\$240	$\begin{array}{l} PM_{2.5} : \ R^2 \sim \ 0.79 \ to \ 0.85 \\ PM_{10} : \ R^2 \sim \ 0.31 \ to \ 0.40 \end{array}$		
	Alphasense (OPC-N2)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$450	$\begin{array}{l} PM_{1.0} \colon R^2 \sim 0.63 \text{ to } 0.82 \\ PM_{2.5} \colon R^2 \sim 0.38 \text{ to } 0.80 \\ PM_{10} \colon R^2 \sim 0.41 \text{ to } 0.60 \end{array}$	R ² ~ 0.99	PDF (1,291 KB)
-	Dylos (DC1100)	Optical	PM _(0.5-2.5)	~\$300	$R^2 \sim 0.65$ to 0.85	$R^2 \sim 0.89$	PDF (1,384 KB)
	Foobot	Optical	PM2.5	~\$200	$R^2 \sim 0.55$		
(T	HabitatMap (AirBeam)	Optical	PM _{2.5}	~\$200	$R^2 \sim 0.65$ to 0.70	$R^2 \sim 0.87$	PDF (1,144 KB)
Z	Hanvon (Hanvon N1)	Optical	PM2.5	~\$200	$R^2 \sim 0.52$ to 0.79		
	MetOne (Neighborhood Monitor)	Optical	PM _{2.5}	~\$1,900	$R^2 \sim 0.53$ to 0.67		
0	Moji China (Aimut)	Optical	PM2.5	~\$150	$R^2 \sim 0.81$ to 0.88		
-	Naneos (Partector)	Electrical	PM (LDSA: Lung- Deposited Surface Area)	~\$7,000	$\begin{array}{l} PM_{1.0}; \; R^2 \sim 0.1 \\ PM_{2.5}; \; R^2 \sim 0.2 \end{array}$		
2	Origins (Laser Egg)	Optical	PM _{2.5} & PM ₁₀	~\$200	PM _{2.5} : $R^2 \sim 0.58$ PM ₁₀ : $R^2 \sim 0.0$		
	Perkin Elmer (ELM)	Optical	PM	~\$5,200	$R^2 \sim 0.0$		
	PurpleAir (PA-I)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$150	$\begin{array}{l} \text{PM}_{1.0} \colon R^2 \sim 0.93 \text{ to } 0.95 \\ \text{PM}_{2.5} \colon R^2 \sim 0.77 \text{ to } 0.92 \\ \text{PM}_{10} \colon R^2 \sim 0.32 \text{ to } 0.44 \end{array}$	$\begin{array}{c} \text{PM}_{1.0};\\ \text{R}^2 \sim 0.95\\ \text{PM}_{2.5};\\ \text{R}^2 \sim 0.99\\ \text{PM}_{10};\\ \text{R}^2 \sim 0.97 \end{array}$	PDF (1,072 KB)
2	PurpleAir (PA-II)	Optical	PM1.0, PM2.5 & PM10	~\$200	$\begin{array}{l} \mbox{PM}_{1.0}; \ \mbox{R}^2 \sim 0.96 \ to \ 0.98 \\ \mbox{PM}_{2.5}; \ \mbox{R}^2 \sim 0.93 \ to \ 0.97 \\ \mbox{PM}_{10}; \ \mbox{R}^2 \sim 0.66 \ to \ 0.70 \end{array}$	$\begin{array}{c} \text{PM1.0:} \\ \text{R}^2 \sim 0.99 \\ \text{PM2.5:} \\ \text{R}^2 \sim 0.99 \\ \text{PM10:} \\ \text{R}^2 \sim 0.95 \end{array}$	PDF (1,328 KB)
	RTI (MicroPEM)	Optical	PM _{2.5}	~\$2,000	$R^2 \sim 0.65$ to 0.90	$R^2 \sim 0.99$	PDF (1,087 KB)
0	Shinyei (PM Evaluation Kit)	Optical	PM _{2.5}	~\$1,000	$R^2 \sim 0.80$ to 0.90	R ² ~ 0.93	PDF (1,156 KB)
()	Speck	Optical	PM _{2.5}	~\$150	$R^2 \sim 0.32$		
	TSI (AirAssure)	Optical	PM _{2.5}	~\$1,500	$R^2 \sim 0.82$		

Results (PM)

Most PM sensors showed:

- Minimal down time
- Moderate intra-model variability
- Strong correlation (R2) with EPA "approved" instruments (e.g., FEM)

However...

- Sensor "calibration" is needed in most cases
- Very small particles (e.g. < 0.5 μm) are not detected
- Bias in algorithms used to convert particle counts to particle mass

Gaseous Sensors

Sensor Image	Manufacturer (Model)	Туре	Pollutant(s)	Approx. Cost (USD)	*Field R ²	*Lab R ²	Summary Report
	2B Technologies (POM)	UV absorption (FEM Method)	O ₃	~\$4,500	$R^2 \sim 1.00$	R ² ~ 0.99	PDF (1,295 KB)
•	Aeroqual (S-500)	Metal Oxide	O ₃	~\$500	$R^2 \sim 0.85$	$R^2 \sim 0.99$	PDF (1,197 KB)
0	Air Quality Egg (Version 1)	Metal Oxide	CO, NO ₂ & O ₃	~\$200	CO: $R^2 \sim 0.0$ NO ₂ : $R^2 \sim 0.40$ O ₃ : $R^2 \sim 0.85$		
	Air Quality Egg (Version 2)	Electrochem	CO & NO ₂	~\$240	CO: $R^2 \sim 0.0$ NO ₂ : $R^2 \sim 0.0$		
	Air Quality Egg (Version 2)	Electrochem	O3 & SO2	~\$240	O_3 : $R^2 \sim 0.0 \text{ to } 0.20$ SO_2 : R^2 n/a		
4	AQMesh (v.4.0) (Discontinued)	Electrochem	CO, NO, NO2 & O3	~\$10,000	CO: $R^2 \sim 0.42 \text{ to } 0.80$ NO: $R^2 \sim 0.0 \text{ to } 0.44$ NO ₂ : $R^2 \sim 0.0 \text{ to } 0.46$ O ₃ : $R^2 \sim 0.46 \text{ to}$ 0.83		
	Perkin Elmer (ELM)	Metal Oxide	NO, NO ₂ & O ₃	~\$5,200	$\begin{array}{c} \text{NO: } R^2 \; n/a \\ \text{NO}_2 \text{: } R^2 \sim 0.0 \\ \text{O}_3 \text{:} \\ R^2 \sim 0.89 \; \text{to} \; 0.96 \end{array}$		
	Smart Citizen Kit	Metal Oxide	CO, NO ₂	~\$200	CO: $R^2 \sim 0.50$ to 0.85 NO_2 : $R^2 \sim 0.0$		
	Spec Sensors	Electrochem	CO, NO ₂ & O ₃	~\$500	$\begin{tabular}{ c c c c c } \hline CO: & \\ R^2 \sim 0.84 \ to \ 0.90 & \\ NO_2: & \\ R^2 \sim 0.0 \ to \ 0.16 & \\ O_3: & \\ R^2 \sim 0.0 \ to \ 0.24 & \\ \hline \end{tabular}$		
U	UNITEC (SENS-IT)	Metal Oxide	CO, NO ₂ & O ₃	~\$2,200	$\begin{array}{c} \text{CO:} \\ \text{R}^2 \sim 0.33 \text{ to } 0.43 \\ \text{NO}_2\text{:} \\ \text{R}^2 \sim 0.60 \text{ to } 0.65 \\ \text{O}_3\text{:} \\ \text{R}^2 \sim 0.72 \text{ to} \\ 0.83 \end{array}$	CO: $R^2 \sim 0.99$ O3: $R^2 \sim 0.82$ to 0.90	CO: PDF (1,283 KB) O3: PDF (1,177 KB)

Results (Gases)

Most gaseous sensors showed:

- Acceptable data recovery
- Wide intra-model variability range
- CO; NO; O3 (when measured alone): good correlation with FRMs
- O3 + NO2: potential O3/NO2 interference
- SO2; H2S; VOC: difficult to measure with available sensors

Sensor Performance Testing: What is Needed?

Trustworthiness

Time & Complexity

TD Environmental Services

- PM2.5 and O3 sensors seems to be good candidates
- Field testing
 - Establish various testing centers across the US and/or around the world
 - Different RH/T environments (P also seems to impact performance)
 - Different PM composition
 - Wide range of concentrations
 - Consistent use of FRM/FEM instruments for comparison purposes
- Lab (chamber) testing
 - Account for a wide/representative RH/T range
 - Specific aerosol composition (e.g., Arizona road dust)
 - Specific range of concentrations
 - Ability to test for multi-pollutant interference (e.g., O3/NO2)
 - Consistent use of FRM/FEM instruments for comparison purposes
- Standardized testing protocols
- Well established performance parameters and standards
- Certification model: Multi-tier vs pass/fail

• <u>Tiered</u>: different performance targets for different sensor applications. Example:

Tier	Uses	Pollutants	Precis	ion Ac	curacy	Sensi	tivity
I	Regulatory or compliance monitoring	ozone, PM _{2.5}	1		1	4	
II	Fenceline and community monitoring	ozone, PM _{2.5} , VOC					
111	Area or source characterization; supplement monitoring networks	ozone, PM _{2.5} , NO2, VOC					
IV	Information, personal monitoring, and education	ozone, PM _{2.5} , NO2, CO, VOC and others					

- <u>Pass / Fail</u>:
 - One set of performance targets
 - Target specific user / application (e.g., community monitoring)
 - Easier to understand for non-technical audience
 - · Helps translating complexity into a simple choice

- A sensor certification program is desirable but very expensive / time consuming to implement
 - Multiple field testing locations
 - Multiple laboratory testing facilities
 - Extended testing time
- The U.S. EPA is leading the way at the National level
 - E-Enterprise
- On-going discussion in California between CARB, SCAQMD, BAAQMD and other air districts
 - Sensor performance verification
 - ASTM method development
 - Other models

Sensor Deployment Challenges

Sensor Unit

Sensor Network

 Assume you have a "certified" PM2.5 sensor

- Design and configuration
- Data communication (e.g., cell; wi-fi; LoRa; other)
- "Calibration" procedures
- QA/QC requirements
- Other

Different sensor networks comprised of the same "certified" sensor may still produce inconsistent data / results

Network Data

- Backend application and data handling procedures
- Validation and other QA/QC requirements
- Correction algorithms / models
- Time averaging
- Analysis and interpretation
- Integration with existing network and other available data

Sensor Deployment Challenges

Sensor Units

 Assume you have 4 different "certified" PM2.5 sensors

Sensor Networks

- Design and configuration
- Data communication (e.g., cell; wi-fi; LoRa; other)
- "Calibration" procedures
- QA/QC requirements
- Other

Different sensor networks comprised of different "certified" sensors measuring the same pollutant(s) will probably produce inconsistent data / results

Networks Data

- Backend application and data handling procedures
- Validation and other QA/QC requirements
- Analysis and interpretation
- Mapping
- Correction algorithms / models
- Time averaging
- Integration with existing network data

SCAQMD Sensor Monitoring Projects

Fence-line	Regional network	US EPA STAR Grant	Other projects
9 PM sensors	~ 100 nodes to measure: O ₃ , NO ₂ , & PM	~ 400 PM sensors in 14 communities	MATES V
IoT vendor platform	Cellular to PaaS	Wi-Fi connected	ROSE/NASA Project
Cellular to SaaS		Data sent to :	Mobile monitoring
API Access	APT access	PurpleAir Map; AQMD Azure	AB617 community monitoring
			SCAQMD Rule 1180 implementation

SCAQMD Sensor Monitoring Projects

Fence-line	Regional network	US EPA STAR Grant	Other projects
9 PM sensors	~ 100 nodes to measure: O_3 , NO_2 ,	~ 400 PM sensors in 14 communities	MATES V
IoT vendor platform	& PM	Wi-Fi connected	ROSE/NASA Project
Cellular to SaaS	API access	Data sent to : PurpleAir Map	Mobile monitoring
API Access		AQMD Azure	AB617 community monitoring
			SCAQMD Rule 1180 implementation

Fenceline Monitoring (Rainbow Disposal Facility)

Fenceline Monitoring (Rainbow Disposal Facility)

Fence-line Monitoring

- 9 sensors measuring PM
- Wireless connectivity
- Power independence
- Remote access to data / device

Fenceline Monitoring (Rainbow Disposal Facility)

SCAQMD Sensor Monitoring Projects

Fence-line	Regional network	US EPA STAR Grant	Other projects
9 PM sensors	~ 100 nodes to measure: O ₃ , NO ₂ ,	~ 400 PM sensors in 14 communities	MATES V
IoT vendor platform	& PM	Wi-Fi connected	ROSE/NASA Project
Cellular to SaaS	Cellular to PaaS	Data sent to : PurpleAir Map; AOMD Azure	Mobile monitoring
API Access	API access		AB617 community monitoring
			SCAQMD Rule 1180 implementation

Regional Monitoring Network (AQY Sensors: PM_{2.5}, O₃, and NO₂)

- 100 AQY installed in Southern California
- AQY measures temperature, relative humidity, and air pollutants: O₃, NO₂, and PM_{2.5}
- Project leads:
 - Aeroqual
 - <u>www.aeroqual.com</u>
 - SCAQMD
 - www.aqmd.gov

Measuring AIR QUALITY in your community

Aeroqual is a New Zealand-based company that helps communities make better air quality decisions by providing them with reliable instruments that measure the quality of their air. We're working with the South Coast Air Quality Management District to set up a network of air quality instruments across Central and Southern California.

OUR TECHNOLOGY: Aeroqual AQY

- The Aeroqual AQY is a low-cost, low-power air quality monitoring instrument designed to provide real time data of air quality.
- AQY push data to the Aeroqual Cloud Server. This allows the instruments to be deployed
- in networks and work together to measure a community's air quality.
- All the device needs is a standard power connection, and to be placed where there is good access to the surrounding air.

WHAT IT MEASURES

Ozone • Nitrogen Dioxide • Particulate Matter (PM2.5, PM10) • Temperature, humidity and dew point

KEY COMPONENTS

Wi-fi and cellular enabled • On board data processing and storage Weather resistant • Air quality sensors

Regional Monitoring Network (AQY Sensors: PM_{2.5}, O₃, and NO₂)

Regional Monitoring Network (AQY Sensors: PM_{2.5}, O₃, and NO₂)

Regional Monitoring Network (AQY Sensors: Network Status)

- Sensors online via cellular network (AT&T)
- Online statistics monitored to provide metrics on deployment rate, and network uptime
- Sensor replacements due to failure over 9 months have been low: 5 x O_3 sensors; 3 x $PM_{2.5}$ sensors

Network Status

Regional Monitoring Network (AQY Sensors: O₃ Collocation Data)

AQY O₃ vs Reference

• Hourly averaged data (Jan 1 – April 30, 2018)

- Collocation data collected at SCAQMD's Rubidoux station
- Fan degradation corrected data (active method)

Regional Monitoring Network (AQY Sensors: NO₂ Collocation Data)

AQY NO₂ vs Reference

- Hourly averaged data (Jan 1 April 30, 2018)
- Collocation data collected at SCAQMD's Rubidoux station
- NO₂ data corrected for O₃ interference

Regional Monitoring Network (R² (AQY vs Reference) vs Distance: O₃)

A one week 'snapshot' is similar to the 3 month period

Regional Monitoring Network (R² (AQY vs Reference) vs Distance: O₃)

- DQO = 90% (R²)
- Correlation not always linear with distance; site location and characteristics also a factor
- How often should the sensor data be corrected using this procedure? Quarterly so far

Regional Monitoring Network (R² (AQY vs Reference) vs Distance: NO₂)

• DQO = 90% (R²)

- R² drops more rapidly with distance (compared to O₃ plot)
- Greater site variation than O3 due to various sources in the area

Regional Monitoring Network $(O_3, NO_2 \text{ and } PM_{2.5} \text{ Maps}^*)$

 Higher granularity for maps obtained using sensor data

 Elevated NO₂ along the freeway

PM_{2.5} is more homogeneously distributed throughout the Basin

*Inverse distance weighted interpolation

Regional Monitoring Network (AQY Sensors Improvement)

Problem: The project has shown PM accumulates on the O_3 sensor inlet mesh over time reducing flow and sensitivity

Regional Monitoring Network (AQY Sensors Improvement)

Solution: use O3 sensor air flow data to correct O3 slope. Results in stabilisation of drift and extension of re-calibration time from 2 months to > 6 months.

Sensor vs FEM slope decreased from 0.96 to 0.57 in 9 months

Sensor vs FEM slope more stable. Slope = 0.89 at 9 months

Regional Monitoring Network (PM Sensor Network - 2017)

Note: Values are reported as AQI units

Regional Monitoring Network (PM Sensor Network - 2018)

Note: Values are reported as AQI units

SCAQMD Sensor Monitoring Projects

Fence-line	Regional network	US EPA STAR Grant	Other projects
9 PM sensors	~ 100 nodes to measure: O_3 , NO_2 ,	~ 400 PM sensors in 14 communities	MATES V
IoT vendor platform	& PM	Wi-Fi connected	ROSE/NASA Project
Cellular to SaaS	Cellular to PaaS	Data sent to :	Mobile monitoring
API Access	API access	PurpleAir Map; AQMD Azure	AB617 community monitoring
			SCAQMD Rule 1180 implementation

U.S. EPA STAR project

Engage, educate, and empower California communities on the use and applications of "low-cost" air monitoring sensors

- Provide communities with the knowledge necessary to select, use and maintain low-cost sensors and to correctly interpret the collected data
- Three year study:
 - SCAQMD (PI)
 - University of California Los Angeles (UCLA; Co-PI)
 - Sonoma Technology Inc. (STI; Co-PI)
 - o BAAQMD
 - Santa Barbara County APCD
 - Other CAPCOA agencies
 - Community Groups
 - Leisure World (Seal Beach, CA)
 - Aeroqual Ltd, Auckland, New Zealand
 - University of Auckland (New Zealand)

U.S. EPA STAR Project

Engage, educate, and empower California communities on the use and applications of "low-cost" air monitoring sensors

- Four specific aims:
 - 1. Develop educational material for communities
 - 2. Evaluate / identify candidate sensors for deployment
 - 3. Deploy selected sensors in California communities
 - 4. Communicate the lessons learned to the public
- On-going activities:
 - Wide Spread Sensor Deployment across California
 - 300+ PM sensors
 - 100 Aeroqual (AQY) nodes (i.e., PM, O₃, NOx)
 - Cloud Based Platform Development
 - Data ingestion and storage
 - Data visualization and mapping
 - Data dissemination

U.S. EPA STAR Project

Engage, educate, and empower California communities on the use and applications of "low-cost" air monitoring sensors

	PM Sensors						
Sensor Image	Manufacturer (Model)	Туре	Pollutant(s)	Approx. Cost (USD)	"Field R²	"Lab R²	Summary Report
0	Moji China (Airnut)	Optical	PM2.5	~\$150	$R^2 \sim 0.81$ to 0.88		
	Naneos (Partector)	Electrical	PM (LDSA: Lung- Deposited Surface Area)	~\$7,000	$\begin{array}{l} PM_{1.0};R^2\sim 0.1 \\ PM_{2.5};R^2\sim 0.2 \end{array}$		
9	Origins (Laser Egg)	Optical	PM _{2.5} & PM ₁₀	~\$200	PM _{2.5} : $R^2 \sim 0.58$ PM ₁₀ : $R^2 \sim 0.0$		
	Perkin Elmer (ELM)	Optical	PM	~\$5,200	$R^2 \sim 0.0$		
	PurpleAir (PA-I)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$150	$\begin{array}{l} PM_{1,0};R^2\sim 0.93 \mbox{ to } 0.95 \\ PM_{2,5};R^2\sim 0.77 \mbox{ to } 0.92 \\ PM_{10};R^2\sim 0.32 \mbox{ to } 0.44 \end{array}$	$\begin{array}{c} PM_{1.0};\\ R^2 \sim 0.95\\ PM_{2.5};\\ R^2 \sim 0.99\\ PM_{10};\\ R^2 \sim 0.97 \end{array}$	PDF (1,072 KB)
	PurpleAir (PA-I- Indoor)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$180	$\begin{array}{l} PM_{2.5};R^2\sim 0.75\\ PM_{10};R^2\sim 0.36 \text{ to } 0.46 \end{array}$		
٩	PurpleAir (PA-II)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$200	$\begin{array}{l} PM_{1.0}; \ R^2 \sim 0.96 \ to \ 0.98 \\ PM_{2.5}; \ R^2 \sim 0.93 \ to \ 0.97 \\ PM_{10}; \ R^2 \sim 0.66 \ to \ 0.70 \end{array}$	$PM_{1.0}$: $R^2 \sim 0.99$ $PM_{2.5}$: $R^2 \sim 0.99$ PM_{10} : $R^2 \sim 0.95$	PDF (1,328 KB)
ģ	RTI (MicroPEM)	Optical	PM _{2.5}	~\$2,000	R ² ~ 0.65 to 0.90	R ² ~ 0.99	PDF (1,087 KB)
19	SainSmart (Pure Morning P3)	Optical	PM _{2.5}	~\$170	R ² ~ 0.73	$R^2 \sim 0.99$	PDF (1,186 KB)
	Shinyei (PM Evaluation Kit)	Optical	PM _{2.5}	~\$1,000	$R^2 \sim 0.80$ to 0.90	$R^2 \sim 0.93$	PDF (1,156 KB)
	Speck	Optical	PM _{2.5}	~\$150	$R^2 \simeq 0.32$		
	TSI (AirAssure)	Optical	PM _{2.5}	~\$1,500	$R^2 \sim 0.82$	$R^2 \sim 0.99$	PDF (5,647 KB)
T	uHoo	Optical	PM _{2.5}	~\$300	$\mathbb{R}^2 \sim 0.0$		

www.aqmd.gov/aq-spec

U.S. EPA STAR Project (PM_{2.5} (PurpleAir) Sensors in SoCal Communities)

U.S. EPA STAR Project (PM_{2.5} (PurpleAir) Sensors in California)

U.S. EPA STAR Project (Community recruitment)

LOW-COST AIR SENSORS STUDY

Purpose of study

Low-cost air sensors present an exciting opportunity to supplement data from fixed monitoring stations to help us better understand local-scale air pollution and climate change. This study aims to determine how low-cost sensors compare to traditional air monitoring devices, explore how air quality changes in the community given diurnal wind patterns across the freeway, and gain a better understanding of users' experience with these low-cost sensors. In the changing climate, we want to determine if low-cost

sensors can produce reliable data compared to standard devices and whether they serve as useful tools for the future of air-quality monitoring.

About the sensors

The sensors used in this study will be the PurpleAir II sensors (shown on the right). The sensors will be mounted outdoors throughout the community and inside select apartments. They will require connection to a wireless internet connection for transmitting data in real-time. This sensor has shown promising results in laboratory and field testing for accuracy, ease of use, and ability to track diurnal variations in air quality. Everyone in the complex, as well as the general public, will be able to view the real-time sensor data on the PurpleAir website, helping you become informed about the air quality in your area and plan outdoor activities accordingly.

Eligibility for participating

If interested in participating, you must be planning to live to in your apartment until at least November 2018 and be able to provide wi-fi to the sensor. You must also be willing to fill out short questionnaires about your perception of sensors and sensor data and feedback about using the device and keep a simple log-book regarding your use of the sensor. You will also need to participate in 1-2 brief focus group sessions or on-on-one interviews to discuss your experience with the project. Participants will receive a \$100 gift card upon

completion.

HOW YOU CAN GET INVOLVED

- Attend an educational workshop
- Volunteer to host an air quality monitor
- Requires a covered patio with a power outlet and wireless internet nearby
- Take care of the operating air monitor for about 2 years
- Monitor your air quality online anytime

NM 9/2017

U.S. EPA STAR Project (Sensor installation guide)

2	<u>s</u>	Go to (A) to set up on a cell phone or tablet Go to (B) to set up on a laptop that uses Wi- Fi.
	Settings Wi-Fi	(A) Cell Phone or Tablet Set Up
	Wi-Fi () → 416 GUEST WIFI • ♥ ()	1. Go to "Settings" and Click on "Wi-Fi" settings.
iPhone/iPad	CHOOSE A INFTWORK. 416AP WIFI * * () AirMonitor,9e2c * () DIRECT-uGM267x 287x Se	 On the list of WiFi network names, find "AirMonitor_xxxx" (xxxx will be actual letters and numbers like "9f66")
Android Phone/ Tablet (Samsung, LG, Motorola, Google, etc.)	VF-F1 Image: Constraint of the constraintof the constraint of the constraint of the constraint of	
iPhone/iPad Android Phone/ Tablet	Wi-Fi Michael Constraints Michael Constraints Wi-Fi On On On On On On On On On On	3. Click on or touch "AirMonitor_xxxx." This is what it will look like if connected correctly.
<u></u>	Conserved answerse Conserved for the server of the serve	 (B) Laptop or Computer Set Up (Windows) 1. Click on the Wi-Fi icon in the bottom righ corner of the screen. 2. On the list of WiFi network names, find "AirMonitor_xxxx" (xxxx will be actual letters and numbers like "9f66") 3. Click on or touch "AirMonitor_xxxx."

U.S. EPA STAR Project (Sensor installation guide)

U.S. EPA STAR Project (Sensor installation survey)

English Version

The Science To Achieve Results (STAR) Grant team at the South Coast AQMD would like to thank you for your participation in the project entitled, " Engage, Educate and Empower California Communities on the Use and Applications of "Low-cost" Air Monitoring Sensors" and to invite you to participate in this very brief online survey about your sensor installation location. Completing this survey with a smart device with a camera will allow you to easily submit a picture.

Installation Survey

Moving forward, please keep an eye out for upcoming community group meetings, an email containing the electronic log note entry form, and changes for end user data visualization and accessibility!

Unsubscribe Forward to a friend South Coast Air Quality Management District • 21865 Copley Drive, Diamond Bar, CA 91765 909-396-2000 • www.aqmd.gov

Spanish Version

EPA STAR Grant: La encuesta de instalación del sensor ahora disponible en Español

El equipo del programa otorgante/ la beca "la ciencia para lograr resultados (STAR, por sus siglas en inglés)" de la Administración de la calidad del aire de la costa sur, (South Coast AQMD, por sus siglas en inglés) le da las gracias por su participación en el proyecto llamado ""Envolver, educar y habilitar a comunidades en California en el uso y aplicación de sensores con monitoreo de aire a bajo costo" y le invita a participar en esta encuesta muy breve acerca del lugar de instalación de su sensor. Si completa esta encuesta con un dispositivo inteligente de cámara le permitirá fácilmente someter/enviar una foto.

Encuesta de instalación

Una vez que haya oprimido el enlace de la encuesta, oprima el tabulador "Default Language", (idioma predeterminado), arriba en la esquina a la derecha de la encuesta y seleccione "Español" del menú desplegable.

Con miras al futuro, esté al pendiente de próximas reuniones en grupo, un correo electrónico con una forma llamada "electronic log note entry form", y cambios de datos finales para el usuario de visualización y accesibilidad!

Remover su nombre Enviar a un amigo South Coast Air Quality Management District + 21865 Copley Drive, Diamond Bar, CA 91765 909-396-2000 • www.agmd.gov

U.S. EPA STAR Project (Sensor installation survey)

Sensor Installation Survey	Community Group* Select from the following communities:	What best describes the location where the sensor is installed?*
This survey is intended as a one-time survey to be completed when a community scientist installs a sensor as part of the South Coast Air Quality Management District's (SCAQMD) U.S. EBB Science to Advice Bowth (CTDB protections to advice the source of t	-Please Select-	Front Porch or Patio
California Communities on the Use and Applications of Low-Cost Air Monitoring Sensors."	El Monte City School District	C Rear Porch or Patio
Name* Community Scientist Name	Fresno, Central California Environmental Justice Network (CCEJN) Imperial County, Comite Civico del Valle, Inc. (CCV)	Eave of the Home
	Kern, Central California Environmental Justice Network (CCEJN) Nipomo, southern SLO County	C External Wall of Home
Email Address		O Balcony
		Other
Date of Installation*	Esri, Garmin, NGA, USGS Powered by Esri	
8/13/18	() Lat: 0 Lon: 144.96552	What direction is the installation location facing?*
Time of Installation	What best describes the type of dwelling where the sensor is installed?*	O North Facing
Morning Afternoon Evening	Single Family Home	South Facing

U.S. EPA STAR Project (Sensor Deployment Across California)

U.S. EPA STAR (Seal Beach Community)

- 10,000 residents (average age 70 yrs)
- 1 km² area
- Borders the 405 freeway (in its most congested section)
- Borders the LADPA and AES electric generating stations
- Few miles from Port of Long Beach
- In landing path for Long Beach Airport
- Two military installations nearby

What can one do with this data?

- Assess spatial and temporal variability
- Identify potential nearby PM sources
- Evaluate impact of wind speed/direction

U.S. EPA STAR (Seal Beach Community)

U.S. EPA STAR (Nipomo Community)

- Particle sensor largely underestimates actual (BAM) PM2.5 concentrations (at times)
- <u>Particle composition</u> is likely to affects sensor readings
- Community member developed a correction algorithm to reconcile sensor and FEM PM2.5 data

CORRECTION ALGORTHM INCORPORATING WIND VELOCITY: Overall PurpleAir PM 2.5 Correction Factor = $(P_r)(1 + F_s F_d)$

$$F_{s} = \int_{-\infty}^{W_{s}} \frac{e^{-W_{s}^{2}/2}}{\sqrt{2\pi}}$$
 and: $F_{d} = \frac{e^{-(W_{d}-\mu_{d})^{2}/2\sigma_{d}^{2}}}{\sigma_{d}\sqrt{2\pi}}$

P_r = 'Raw' (uncorrected) PurpleAir PM 2.5 readings (ug/m³)

F_s = Windspeed Correction Factor

F_d = Wind Direction Correction Factor

 W_s and W_d = Wind speed and direction, individual data points μ_s and μ_d = Mean (average) of all wind velocity data points σ_s and σ_d = Standard Deviation of wind velocity data sets σ_s^2 and σ_d^2 = Variance (standard deviation squared) e = Constant (= 2.7182...) and base for natural logarithms A_s = Windspeed adjustment applied to F_s for curve fitting

U.S. EPA STAR (Next Steps)

• Development of a cloud-based computing platform to ingest, store, analyze, and display sensor data

Data analysis workloads larger than current tools can handle

Fence-line monitoring: ~15 million rows of data

Regional monitoring network: ~40 million rows of data

STAR Grant: ~50 million rows of data

South Coast AQMD R1180: XX million rows of data

CA AB617: xx billion rows of data

SCAQMD Sensor Monitoring Projects

Fence-line	Regional network	US EPA STAR Grant	Other projects
9 PM sensors	~ 100 nodes to measure: O_3 , NO_2 ,	~ 400 PM sensors in 14 communities	MATES V
IoT vendor platform	& PIVI	Wi-Fi connected	ROSE/NASA Project
Cellular to SaaS		Data sent to :	Mobile monitoring
API Access	APT access	AQMD Azure	AB617 community monitoring
			SCAQMD Rule 1180 implementation

Other Projects MATES V (2018-2019)

- Regional air toxics monitoring and modeling
- Advanced monitoring to find potential hotspots
- Focus on refineries and other industrial sources
- Community engagement through sensor network deployments

*Actual location of a few monitoring sites may differ

Other Projects MATES V (2018-2019)

Other Projects (Mobile Monitoring)

- Ford Escape PHEV (MY 2010, SCAQMD fleet vehicle)
- Mobile measurements of NAAQS criteria pollutants and air toxics
- Fast response regulatory-grade, research-grade, consumer-grade
- Vehicle speed: 30 ± 3 mph
- Extended on-road sampling periods (> 4 hours)
- Additional data parameters collected
 - GPS Coordinates
 - Wind Speed/Direction
 - 340° Video

Instruments

Pollutant	Time Resolution
BC	1 sec
Particle Mass (FEM, near-FEM, sensor)	6, 60, 80 sec
Particle Count	1 sec
CO (FRM)	1 sec
NO ₂ (FEM, sensor)	6, 60 sec
O ₃ (FEM, sensor)	10, 60 sec

Other Projects (Mobile Monitoring)

Other Projects (Mobile Monitoring)

Current and Upcoming Air Monitoring Initiatives at the SCAQMD

Conclusions

- Sensors and sensor networks:
 - Great survey tools for hot-spots identification and to better understand spatial and temporal variations of PM_{2.5}, O₃, and NO₂
 - Although they do not produce actionable data <u>their measurements can lead</u> to action. Can be used to support community monitoring
- Need for a <u>sensor certification program</u> to provide users with the knowledge to appropriately select sensors for specific applications
 - Additional guidance for air districts to correctly implement current/upcoming state and local rules (e.g., AB617 and Rule 1180)
- Many challenges ahead, but it is difficult to see a future where sensors and sensor networks will not be integrated in existing ambient air monitoring networks

Thanks!

The AQ-SPEC Team

- Dr. Jason Low
- Dr. Andrea Polidori
- Dr. Vasileios Papapostolou
- Brandon Feenstra
- Dr. Hang Zhang
- Berj Der Boghossian
- Dr. Michelle Kuang
- Dr. Ashley Collier (NEW)
- Dr. Wilton Mui (NEW)
- Seven Boddeker (NEW)