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Convergence of bandwidth, network
ubiquity, mobile devices/loT, big data
analytics

Technology

Fundamentally changing our social contracts

On Demand Society
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THE COMING FLOOD OF DATA IN AUTONOMOUS VEHICLES
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Petrol Station 2: EXIST
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representation of the
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Observed incident,
sent to cloud
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Figure 4. MT detected real-life fatal errors in LIDAR point-cloud data interpretation in the Apollo “perception” module: three missing cars
and one missing pedestrian.

(a) Original: 101,676 LIDAR data points; the green (c) Original: 104,251 LiDAR data points; the small
boxes were generated by the Apollo system to pink mark was generated by the Apollo system to
represent the detected cars. represent a detected pedestrian.

(b) After adding 1,000 random data points outside (d) After adding only 10 random data points out-
the ROI, the three cars inside the ROl could no side the ROI, the pedestrian inside the ROl could
longer be detected. no longer be detected.

Metamorphic Testing of Driverless Cars, ZHI QUAN ZHOU AND LIQUN SUN
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Impact?

Platooning

Eco-driving

Congestion mitigation
De-emphasized performance
Improved crash avoidance
Vehicle right-sizing

Higher highway speeds i —|
Increased features |
Travel cost reduction ||
New user groups | —

Changed mobility services
Infrastructure footprint*

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

% changes in energy consumption due to vehicle automation

Dato from: htto://www.




y In 2035, approximately 40 percent of NHS .
B roadways will approach or exceed capacities, and .

25 percent of roadway links will exceed their
capacities. Source: FHWA.

/



y b
‘ J‘ e \ )i X
v By /
| & Challenge: | ' Gy 8
. 8 X
- ’,r"\ P . / Sy \
/~7 » !
; ‘I~ \ - s e,
324 AS Y % ’
! Y X
| eospatially distributed
; o | » VE) Boston g p y I
f N ST L EX ‘ / ARE 5 4 D
¥ p
Vi o\
N
Y S ol
¥ }
‘ ‘ Gt
» \\ ) ;{ ?,
s GG 7R
‘ i
v T 3
o f ! \
. (’ . Atlanta
B f ‘ ; Images courtesy of HERE Research

{ERE Rs¢



High Performance Computing



Big Data Solutions
for Mobility

Rl Berkeley ... oz Argonne ™
BERKELEY LAB Connected
. Corridor,
Develop high-speed HPC Los Angeles
. UCBerkel
enabled tools that will create CalTrans
LA Metro

actionable control predictions at
the network level

m 8

Urban-scale simulation, 22 Million
trips with active routing in 3 minutes

Hwy 101 Event

A

7
&
XX
\ S
Red_- high congestlon /
Blue —low congestion

Demand

Automated Data Ingestion

Model
Patterns

Veracity Fusion

Predictive Analytics

Input to Models

St

Feedback to

Rapid Network Simulation

Network Dynamics
Analytics
Congestion
Energy, Mobility, Productivity

improve ingestion

Data Science
Statistics
Machine Learning
Predictive Analytics

b

\

Network Modeling and Simulation
Parallel Discrete Event Simulation

Computational Tools
Traffic Assignment

High Performance Computing

166K travel time hours
64K gallons of fuel
(with 25% vehicle modeled)
At cost of
368K extra vehicle km

Impact of Active
Routing

(/,/

Red_ - decreased flow(|
Blue — increased flow




Active control

requires examination
of the dynamics of
our cities

* Mobiliti

* LBNL SuperComputer

e 22M trip legs

e ¥2M link, 1M node road network
* With dynamic routing

* 3 minute run time

e Surrogate models

~ 02/27 12:52am 02/27 01:28am



High-Performance Computing (HPC) Enabled Computation of Demand Eﬁm
Models at Scale to Predict the Energy Impacts of Emerging Mobility Solutions Mobility

Traffic Assighment : User Equilibrium Travel Time User Equilibrium Fuel
MODEL MANAGER:
State Trajectory Link Costs
Traffic Model Cost Function Sum
Demand Assignment | Path Costs
SOLVER

Optimize Travel Time for User
Optimize Travel Times Systems Level
Optimize Fuel for User
Optimize Fuel System Level

Given the window size=4h, the average leg duration
of SOT is 192 s (8.47%) less than the UET case.

The average leg fuel consumption of SOF is 34 ml
(3.59%) less than the UEF.

Compute time 5 hours

coceeer)f B k |
Creley
reey Las RCREERE




Parallelized on 16 nodes of Cori (32 processes x 31 threads per
process). assigning 40 million trip legs for 12 (2 hour) time segments

Run time : ~10 minutes
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Advance https://github.com/doctorjane/advance

* Advance is a framework for building data transformation pipelines. Advance allows you
to concisely script your data transformation process and to incrementally build and easily
debug that process. Each data transformation is a step and the results of each step
become the input to the next step.

* The artifacts of each step are preserved in step named directories. When the results of
a step are not right, just adjust the Advance script, delete the step directory with the bad
data and rerun the script. Previously successful steps are skipped so the script moves
quickly to the incomplete step. Similarly, when steps fail the results are preserved in
directories prefixed with "tmp_". This isolates incomplete step data and ensures that the
step is re-processed when the problem is resolved.

* Your project utilizing Advance contains, which we will call "your Advance script." a
primary ruby script that imports Advance and includes your data transformation
stepsEach step describes a command to be run on your data. These commands can be
one of the prepackaged Advance scripts, unix commands (like split, cut, etc), or
scripts/commands that you create in whatever language is convenient for you. Advance
invokes these scripts one by one much like you would at the command line. Advance logs
the exact command that is invoked so that you can run it yourself to check the output
manually and to debug failures.


https://github.com/doctorjane/advance

Steps in Advance

e Advance steps are composed of a step processing type function,
followed by a slug for the step, followed by the command or script.
For example:

single :unzip_7z_raw_data_file, "7z x {previous_file}"
single :split_files, "split -1 10000 -a 3 {previous_file} gps_data_"

multi :add_local time, "cat {file_path} | add_local time.rb timestamp
local_time US/Pacific > {file}" # ...
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The Joys of Big Data

60,000 mobile device trajectories
(20,000 limit by visualization)




Challenges with Sensor Data Modeling

PeMS Data : Inductive loop sensors in major highways

772954 - WB  Complex spatial
772933 - WB : 4__> dependency
O
772953 - EB

* Non-stationary temporal
dynamics

* Non-Euclidean spatial
geometry

Speed (mph)

* Modelling each sensor

PN y ¥
AR — 772933 - WB

20 1 s independently fails to

——772953 - EB

capture the spatial
correlation

0 3 6 9 12 15 18 21 24
Time (H)



Forecasting Vehicle Dynamics Using DCRNN

=90 +e1

Encoder Decoder . e
A A
'DCRNN Layer DCRNN Layer ' DCRNN Layer DCRNN Layer'
X141 Xy X1 Xt
Input Graph
Sequence
Predicted Graph
Sequence
S —>
Yo' ReLU <Go> ReLU LY
=
Y|
: T2 A
X i T
Copy States

Combining the Diffusion Convolution with a Recurrent Neural Network into a Diffusion Convolutional
Recurrent Neural Network (DCRNN) allows for predicting speeds and flows from inductive loop sensors.



Flow Prediction : 162 loop detecto~ -

_output=flow; horizon=60mins; loopid =

1200

* District: Los Angeles (D7)
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0 2000 4000 6000 8000 10000 12000

DCRNN tracks the real-world flows

44



DCRNN Results : Next Step Mobile Device Integration

output=speed; horizon=60mins ) é output=speed; horizon=60mins
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Link Actor Model Provides Foundation

speed (mph)
n S D

Replace with link/multi-link

1 1 o B ‘ |
models learned from real-world + 0 o wm w w m m m m

450

time (s)
dynamics

- N

T

acceleration (m/sz)
o
T

' '
[¥) -

o

50 100 150 200 250 300 350
time (s)

* Focused on the dynamic evolution on traffic networks — we are not modeling demographics,
choice of transit over personal vehicle, lane level dynamics

400

450
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Optimistic Parallel Discrete Event Simulation

Conservative (window-based) PDES:
Requires every rank to be synchronized to a
global time step

Global time step determined by fastest
possible agent interaction

Leverages GASNet-Ex and Devastator (PDES engine)

Avoids synchronization through optimistic asynchronous execution

Geospatial Partitioning of the Network to support
Distributed Memory Computation

Simulation is parallelized by splitting links across multiple computer nodes/processes/threads to
logical processors (LPs)

Vehicles traverse between LPs and must be communicated between ranks

Optimistic PDES:

Allows ranks to execute without
synchronization and enforces causality by
rolling back mis-speculatively executed events.
Reduce simulation overheads by multi-
objective partitioning of actors based on loads
and interaction.



Bay Area Large-Scale Traffic
Simulation

\ 1 17 /

Map View
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P, © 2019 HERE Technologies.
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Bay Area Large-Scale Traffic
Flows

Description TBD

Berkeley Labs is simulating the vehicle flow
rates and resulting congestion on each of
the 2.2 million road links in the system.

Legend
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Map View

Static Rotating

Choose between a static view or rotating 3D
view.

Attribution

Traffic simulatation data, Berkeley Lab. Base
map, © 2019 HERE Technologies. Made with
HERE harp.gl and XYZ.



Active Control?



Emerging
Bottom Up
Solutions

Active
Control

Unregulated
impacts the quality
of life of the city



Control Systems View

Infrastructure Control Individual Control

Knowledge Based
Routing

Dynamic
Routing

Connected
(Automated?) N
Routing




Estimating Impact of Dynamic Rerouting

Reroute Check

/ﬁ \\
-/ “~
e . —

.~
4 N
’ : " inkAcor -~~~ -
[ - - - -

. Vehicle checks with controller before New route avoids congested links
Link status updates traversing congested links

* Through the addition of vehicle controller actors, we can enable a parameterized fraction of vehicles to
dynamically reroute around congestion

* This is a key capability to allow the prediction of emergent behavior in response to unexpected changes in the
road network or demand

* Example: optimize government response to major traffic incidents or evacuation scenarios
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System-wide traffic demand Reroutes per hour Average time saved per reroute

* We observe the time dependence of vehicle rerouting depends on the demand profile on the
traffic system as well as timing of the incident scenario

e Reroutes peak during morning and evening peaks, as well as during the induced congestion due
to incident scenario

* Value of rerouting (average time saved) dramatically increases during a major road network
incident
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Simulation Validated with Relevant Real World Data
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Simulation Validation
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Energy Budget?



cnergy consumption cstimates Trom real-vworliad
Devices

- N , , , ] , ] . for Plug-In Hybrid Vehicles from ANL D3 Datasets
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Prediction of Instant Fuel Consumption Rate

* Data-driven approach to combine the D3 dynamometer datasets with real-
world speed trajectories from HERE probe data

* Long short-term memory network (LSTM) provides the prediction capability

---------

c(t) < Fuel_map(Fr(t),V (1)) -. m 60F
: Sl c50f _
= |
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Grid

* Develop intelligent, scalable and
computationally efficient solutions for
coupled grid-transportation co-
optimization

Reduction and decomposition;

Bi-level optimization Stackelberg game;

Massively-parallelization;

Hybrid solution space method:

evolutionary + gradient methods;

P P1
L pinf (X, ) ryin £ (¥, %5, +)
Subject to: - Subject to:
g(Xy, Xy, )< b g(Xl.)fzw") <b
h(Xl,XZ, )=c h(Xl:Xz:‘“) =c

P2
min f(X;, X5, )
X3

Subject to:

9(R0Xo,) < b
h(Xl,Xz,"') =

I1.
_ Iterative ,
Solving the Leader OPF, Solving the Follower DTA,

min f(X1,Xz,+): Loop

Parallel ExaGrid simulation
and evaluation

7

Hybrid solution space search
method: Evo. + gradient

7

High-performance Computing (HPC) Itf@ | i

minf(il,Xz, ):
X2

New candidate solutions: X,

i

Hybrid solution space search
method: Evo. + gradient

Q&w candidate solutions: }A(J : : and evaluation J

ﬂ

Parallel Mobiliti simulation
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