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Cyber-Physical Transformation





Fundamentally changing our social contracts

Convergence of bandwidth, network 
ubiquity, mobile devices/IoT, big data 
analytics
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Does the big
data have to
be big?
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billions of investment

disruption



Metamorphic Testing of Driverless Cars, ZHI QUAN ZHOU AND LIQUN SUN 



Impact?



Impact?



Tipping Points
Transportation/Mobility
Big Data/Privacy/Cyber Security

In 2035, approximately 40 percent of NHS 
roadways will approach or exceed capacities, and 

25 percent of roadway links will exceed their 
capacities. Source: FHWA.
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geospatially distributed,
temporal data analytics

Challenge:



High Performance Computing



Develop high-speed HPC 
enabled tools that will create 

actionable control predictions at 
the network level

Big Data Solutions 
for Mobility

Urban-scale simulation, 22 Million
trips with active routing in 3 minutes

Impact of Active
Routing

Red_- decreased flow
Blue – increased flowRed_- high congestion

Blue – low congestion

Hwy 101 Event 166K travel time hours
64K gallons of fuel 

(with 25% vehicle modeled)
At cost of 

368K extra vehicle km

Demand



Active control 
requires examination 
of the dynamics of 
our cities

• Mobiliti
• LBNL SuperComputer
• 22M trip legs 
• ~2M link, 1M node road network
• With dynamic routing
• 3 minute run time

• Surrogate models



User Equilibrium Travel Time User Equilibrium Fuel

System Optimal Travel Time System Optimal Fuel

Compute time 5 hours

Given the window size=4h, the average leg duration 
of SOT is 192 s (8.47%) less than the UET case. 

The average leg fuel consumption of SOF is 34 ml 
(3.59%) less than the UEF.

Traffic Assignment :Software Architecture I

Optimize Travel Time for User
Optimize Travel Times Systems Level

Optimize Fuel for User
Optimize Fuel System Level

High-Performance Computing (HPC) Enabled Computation of Demand 
Models at Scale to Predict the Energy Impacts of Emerging Mobility Solutions



Parallelized on 16 nodes of Cori (32 processes x 31 threads per 
process). assigning 40 million trip legs for 12  (2 hour) time segments

Run time : ~10 minutes 





Advance    https://github.com/doctorjane/advance
• Advance is a framework for building data transformation pipelines. Advance allows you 

to concisely script your data transformation process and to incrementally build and easily 
debug that process. Each data transformation is a step and the results of each step 
become the input to the next step.

• The artifacts of each step are preserved in step named directories. When the results of 
a step are not right, just adjust the Advance script, delete the step directory with the bad 
data and rerun the script. Previously successful steps are skipped so the script moves 
quickly to the incomplete step. Similarly, when steps fail the results are preserved in 
directories prefixed with "tmp_". This isolates incomplete step data and ensures that the 
step is re-processed when the problem is resolved.

• Your project utilizing Advance contains, which we will call "your Advance script." a 
primary ruby script that imports Advance and includes your data transformation 
stepsEach step describes a command to be run on your data. These commands can be 
one of the prepackaged Advance scripts, unix commands (like split, cut, etc), or 
scripts/commands that you create in whatever language is convenient for you. Advance 
invokes these scripts one by one much like you would at the command line. Advance logs 
the exact command that is invoked so that you can run it yourself to check the output 
manually and to debug failures.

https://github.com/doctorjane/advance


Steps in Advance

• Advance steps are composed of a step processing type function, 
followed by a slug for the step, followed by the command or script. 
For example:

single :unzip_7z_raw_data_file, "7z x {previous_file}" 
single :split_files, "split -l 10000 -a 3 {previous_file} gps_data_" 
multi :add_local_time, "cat {file_path} | add_local_time.rb timestamp 
local_time US/Pacific > {file}" # ...



60,000 mobile device trajectories
(20,000 limit by visualization)

The Joys of Big Data



Challenges with Sensor Data Modeling

• Complex spatial 
dependency

• Non-stationary temporal 
dynamics

• Non-Euclidean spatial 
geometry

• Modelling each sensor 
independently fails to 
capture the spatial 
correlation

772954 - WB

772953 - EB

772933 - WB

PeMS Data : Inductive loop sensors in major highways



Forecasting Vehicle Dynamics Using DCRNN

Combining the Diffusion Convolution with a Recurrent Neural Network into a Diffusion Convolutional 
Recurrent Neural Network (DCRNN) allows for predicting speeds and flows from inductive loop sensors.



Flow Prediction : 162 loop detectors

44

DCRNN tracks the real-world flows

• District: Los Angeles (D7)



DCRNN Results : Next Step Mobile Device Integration

MAE is usually under 3 miles per hour

Group: 5 
Node: 262

Group: 6 
Node: 250

Mobile device trajectories for 1210 segment

11,160 detectors



Link Actor Model Provides Foundation

• Focused on the dynamic evolution on traffic networks – we are not modeling demographics, 
choice of transit over personal vehicle, lane level dynamics

Link Actor

Receive Event: T0 Send Event: T1 = T0 + Sa(va)

Replace with link/multi-link
models learned from real-world

dynamics









Optimistic Parallel Discrete Event Simulation

Conservative (window-based) PDES:
Requires every rank to be synchronized to a 
global time step
Global time step determined by fastest 
possible agent interaction

Geospatial Partitioning of the Network to support 
Distributed Memory Computation

Optimistic PDES:  
Allows ranks to execute without 
synchronization and enforces causality by 
rolling back mis-speculatively executed events.
Reduce simulation overheads by multi-
objective partitioning of actors based on loads 
and interaction.

• Simulation is parallelized by splitting links across multiple computer nodes/processes/threads to 
logical processors (LPs)

• Vehicles traverse between LPs and must be communicated between ranks

• Leverages GASNet-Ex and Devastator (PDES engine)
• Avoids synchronization through optimistic asynchronous execution





Demand 22M ODS
Network Size 2M links, 1 M nodes



Active Control?



Emerging 
Bottom Up 
Solutions

Active 
Control

Unregulated
impacts the quality
of life of the city



Control Systems View
Infrastructure Control Individual Control

Knowledge Based
Routing

Dynamic
Routing

Connected
(Automated?)

Routing



Estimating Impact of Dynamic Rerouting

• Through the addition of vehicle controller actors, we can enable a parameterized fraction of vehicles to 
dynamically reroute around congestion

• This is a key capability to allow the prediction of emergent behavior in response to unexpected changes in the 
road network or demand

• Example: optimize government response to major traffic incidents or evacuation scenarios

Vehicle checks with controller before
traversing congested links

New route avoids congested links
Link status updates



Temporal Distribution of Vehicle Rerouting

• We observe the time dependence of vehicle rerouting depends on the demand profile on the 
traffic system as well as timing of the incident scenario

• Reroutes peak during morning and evening peaks, as well as during the induced congestion due 
to incident scenario

• Value of rerouting (average time saved) dramatically increases during a major road  network 
incident

System-wide traffic demand Reroutes per hour Average time saved per reroute



Validation



Simulation Validated with Relevant Real World Data

Uber
Movement

Travel
Times

Uber
Start 8am

Mobiliti
Start 8am

San Francisco
Planning Group

Demand
Model

22M OD’s

Problem Space
719M

8 M overlap
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Energy Budget?



Energy Consumption Estimates from Real-World 
Devices

63

ML Derived Fuel and Energy Consumption Rates 
for Plug-In Hybrid Vehicles from ANL D3 Datasets

Sample Trajectory in Congestion

Accumulative Energy and Fuel Consumption for Sample Trajectory



Prediction of Instant Fuel Consumption Rate
• Data-driven approach to combine the D3 dynamometer datasets with real-

world speed trajectories from HERE probe data
• Long short-term memory network (LSTM) provides the prediction capability

𝑐 𝑡 ⇐ 𝐹𝑢𝑒𝑙_𝑚𝑎𝑝(𝐹- 𝑡 , 𝑉(𝑡))

𝑐 𝑡 ⇐ 𝑭[𝐹- 𝑡 , 𝐹- 𝑡 − 1 ,⋯ , 𝐹- 𝑡 − 𝑁 ,
𝑉 𝑡 , 𝑉 𝑡 − 1 ,⋯ , 𝑉 𝑡 − 𝑁 ,
𝑅𝑃𝑀 𝑡 , 𝑅𝑃𝑀 𝑡 − 1 ,⋯ , 𝑅𝑃𝑀 𝑡 − 𝑁 ,
𝑇 𝑡 , 𝑇 𝑡 − 1 ,⋯ , 𝑇 𝑡 − 𝑁 ,

𝑐 𝑡 − 1 , 𝑐 𝑡 − 2 ,⋯ , 𝑐 𝑡 − 𝑁 − 1 ]

⋯

F: Recurrent Neural 
Networks (RNN)



ML Models for Energy Consumption sample I210 
trajectories

65

Trajectories from Mobile Devices on I210

Energy Consumption 
Sample for Three Vehicles 

Types



Grid

• Develop intelligent, scalable and 
computationally efficient solutions for 
coupled grid-transportation co-
optimization

• Reduction and decomposition;

• Bi-level optimization Stackelberg game;

• Massively-parallelization;

• Hybrid solution space method: 

evolutionary + gradient methods;

High-performance Computing (HPC)

+

Solving the Leader OPF, 
𝒎𝒊𝒏
𝑿𝟏

𝒇(𝑿𝟏, C𝑿𝟐,⋯ ):

Parallel ExaGrid simulation 
and evaluation

Hybrid solution space search 
method: Evo. + gradient

New candidate solutions: C𝑿𝟏

Solving the Follower DTA, 
𝒎𝒊𝒏
𝑿𝟐

𝒇(C𝑿𝟏, 𝑿𝟐,⋯ ):

Parallel Mobiliti simulation 
and evaluation

Hybrid solution space search 
method: Evo. + gradient

New candidate solutions: C𝑿𝟐

I.

II.

P p1 p2

Iterative
Loop



Thank you!

Cy Chan, Bin Wang, John Bachan
LBNL

Prasanna Balaprakash, Tanwi Mallick, Eric Rask
ANL


