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Executive Summary 

Our interconnected world, linked by transportation networks, plays a major role in the spread of a 
pandemic such as COVID-19. The virus originated in a single community, but due to the global nature of 
transportation, it spread to other parts of the world, where it impacted local communities. And the cycle 
repeated, many times over. In the context of disease spread, transportation can be viewed as a disease 
vector because it can spread diseases through at least the following three mechanisms: 

• Infected people and goods travel to other locations and can spread the disease when they reach 
their destinations and along the way. 

• People congregate in groups and at higher densities when using public transportation, making it 
more likely that infected people can infect their fellow passengers. 

• The surfaces in public transportation and shared vehicles can become infected through contact 
by infected people, potentially infecting others who touch the same surfaces.  

It is therefore vitally important to clearly understand transportation’s role in the spread of disease so 
that informed decisions can be made to stop or at least significantly reduce the spread of disease 
through transportation. In this project, we developed a demonstration model to show how 
transportation can function as a disease vector and to show how certain policies can be effective in 
reducing the spread of a disease such as COVID-19. The model addresses the spreading of disease 
through the third mechanism outlined above. 

The demonstration model uses a stochastic agent-based approach that models infections due to local 
person-to-person and person-to-vehicle interactions. People are arranged on a square grid with periodic 
boundary conditions, and only nearest neighbors can come in contact with each other. We assume that 
any person can come in contact with any vehicle with equal probability. People find themselves in the 
following states: vulnerable, infected (with a variable time-dependent infectivity), recovered, or dead. 
Vehicles are characterized by their variable time-dependent infectivity. The model simulates person-to-
person and person-to-vehicle interactions to model the spread of a disease such as COVID-19 through 
the synthetic population. The model parameters that can be changed in the modeling approach are the 
following: 
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• Person-to-person encounter rate. 
• Person-to-vehicle encounter rate. 
• Vehicle disinfection rate. 
• Person per vehicle ratio. 

These variables simulate policies such as social distancing, shelter in place, disinfection of public 
transportation vehicles, frequency of public transportation services, occupancy rates in public 
transportation vehicles, etc. The model shows that the key variables are all important in controlling the 
spread of a disease such as COVID-19 though transportation, and some combinations of the policies are 
more effective than others. The outputs of the model are shown graphically as well as through 
simulation videos. Simulation videos for each scenario may be accessed and viewed at the following 
Dropbox location. 

The demonstration model shows that transportation can be modeled as a disease vector and that key 
policies such as social distancing, shelter in place, disinfection of public transportation vehicles, and 
limitations on the number of people per vehicle are all very effective in fighting the spread of disease 
through transportation. The demonstration platform has the potential to be adapted to a transit 
network, city, metropolitan planning organization, or region. Further, the platform has the potential to 
more fully inform decision makers as they develop strategies to effectively combat the spread of disease 
through the transportation system. 

For Further Information 

This project brief represents work in progress, with funding from the Texas A&M Transportation 
Institute’s Center for Advancing Research in Transportation Emissions, Energy, and Health, a U.S. 
Department of Transportation University Transportation Center. The grant number is 69A3551747128. 

For further information, please contact: 

Joe Zietsman, Ph.D., P.E. 
Director 
Center for Advancing Research in Transportation Emissions, Energy, and Health 
Texas A&M Transportation Institute 
1111 RELLIS Parkway, Bryan, TX 77807 
Email: j-zietsman@tti.tamu.edu  
Phone: 979.317.2796 
https://www.carteeh.org  
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Introduction 

Transportation plays a major role in the 
global spread of disease. Transportation 
may affect the spread of epidemics in 
several ways. First, transportation increases 
the range of movement and the spatial 
diversity of the infected and exposed 
individuals by facilitating encounters 
between people who do not live near each 
other. Second, public transportation 
increases the transmission rate by forcing 
people into prolonged contact in a confined, 
close environment. And third, public 
transportation vehicles and infrastructure 
can become carriers of disease that facilitate 
the indirect transmission of pathogens. In 
this study, we extend traditional 
epidemiological models by specifically 
addressing the indirect disease transmission 
mechanism. Infectious people deposit 
pathogens onto inanimate objects where 
the virus can remain viable and active for 
hours and even days. Infected objects (also 
referred to as fomites) in transportation 
vehicles and infrastructure, such as seat 
belts, ticketing booths, armrests, etc., are 
examples of fomites. We explore the effect 
of indirect transmission, that is, the 
infections that occur when vulnerable people become infected through contact with fomites. 

COVID-19 and previous pandemics have shown us that we must take every possible precaution to 
minimize disease transmission, and this includes addressing transportation’s role in the spread of 
disease. The role of transportation in the spread of disease, specifically in vehicles, has been discussed 
to some extent across the literature. Transportation has historically played a role in the spread of 
diseases, including influenza (Browne et al., 2016), severe acute respiratory syndrome (SARS) (Bowen 
and Laroe, 2006), and tuberculosis (Edelson and Phypers, 2011). Studies have also focused on the 
enhancement of person-to-person transmission in close quarters (Harris, 2020; Kucharski et al., 2020; 
Li et al., 2020; Riou and Althaus, 2020) and indirect transmission via fomites (Zhao et al., 2019). 
However, there are still gaps in understanding the impact of transportation vehicles and infrastructure 
across all transport modes as an additional means of disease transmission. To our knowledge, there are 
no models or simulation tools that attempt to quantify the role of transportation vehicles and 
infrastructure as disease vectors. 

Highlights 

• Transportation can affect the spread of disease in 
several ways: 

➢ Increases the range and diversity of 
infected/exposed individuals. 

➢ Increases transmission rate by forcing people 
into prolonged contact in a confined, close 
environment. 

➢ Allows indirect transmission of pathogens 
through surfaces in the vehicles. 

• Transportation can act as a disease vector. 

• We showcase a simple demonstration model of 
how disease can spread due to transportation with 
respect to person-to-person contact rates, person-
to-vehicle contact rates, disinfection rates, and 
number of passengers per vehicle. 

• Lower person-to-person contact, person-to-vehicle 
contact, and passengers per trip as well as higher 
disinfection rates are associated with lower risk of 
disease transmission. 
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Model and Simulation Approach 

We developed a demonstration model using a 
stochastic agent-based approach that models 
infections due to person-to-person contacts 
(as in other epidemiological models), while 
additionally modeling infections caused 
indirectly (i.e., from vehicles to people). The 
model includes two types of agents: people 
and vehicles (representing any form of public 
transportation). Notably, the model addresses 
near-range contacts between people, but it 
does not address long-range contacts between 
people or person-to-person contacts inside 
public transportation vehicles. People are 
arranged on a square grid with periodic 
boundary conditions, and only nearest 
neighbors (spatially) can come in contact with 
each other. We assume that any person can 
come in contact with any vehicle with equal 
probability. Each person is characterized 
quantitatively by the vulnerability to infection 
(vulnerable or affected), the onset time of 
infection, the time-dependent level of 
infectivity, and the time-dependent level of 
activity. Vulnerable people can become 
infected as a result of contact with an infected 
person or a vehicle with infectivity I. The 
probability of infection in such an encounter is 
assumed to be P = 1 − e−λI, where the 
parameter λ is estimated to be 0.018 based on 
the number of daily contacts and the reproduction number R0 reported in Tang et al. (2020).  

The infectivity dynamics of people and vehicles are different. We assume that the infectivity of a person 
(shown in Figure 1a) rises linearly over a time period τ1, which is estimated to be 3 days (Guan et al., 
2020), to a maximum of 1 and then falls linearly to 0 at time τ2 after the onset of infection. The mean 
recovery time τ2 − τ1 is estimated to be 15 days (Aylward and Liang, 2020). The activity factor determines 
the rate at which the infected person comes into contact with vehicles and other people. Its dynamics 
mirror that of infectivity (shown in Figure 1b). Healthy people are characterized by the activity factor of 
1. After the onset of infection, the activity factor decays linearly with time and reaches the minimum 
dictated by the severity of the particular disease instance. The severity of each infection is assumed to 
be random and uniformly distributed in (0,1). Vehicles are characterized quantitatively by their level of 
infectivity. The infectivity decays exponentially with the characteristic time scale τ3, which we estimate 
to be roughly 0.4 days based on the study of the surface stability of SARS-CoV-2 (van Doremalen et al., 
2020). 

Model Overview 

• Two types of agents: people and vehicles. 

• Each agent is characterized by a time-dependent 
infectivity. 

• Four types of events: 

➢ Person-to-person encounters. 
➢ Person-to-vehicle encounters. 
➢ Vehicle disinfections. 
➢ Deaths. 

• People are arranged on a square grid, and only 
nearest neighbors can interact. 

• Any person is equally likely to encounter any 
vehicle. 

• People can be infected by other people and by 
vehicles. 

• Vehicles are infected by people. 

• The model does not address long-range contacts 
between people or person-to-person contacts 
inside a public transportation vehicle. 
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Figure 1: The infectivity (a) and the activity (b) dynamics of a person. Time 0 corresponds to the time 

at which a particular person became infected. 

We employed the simulation methodology (Gillespie, 1976, 1977) that proceeds via stochastic 
sequential processing for four types of events: 

• Person-to-person contacts. 
• Deaths. 
• Person-to-vehicle contacts. 
• Vehicle disinfections. 

The rate of person-to-person contacts is the total human activity A, the sum of all current activity factors 
scaled by the person-to-person contact rate C. When a person-to-person contact event is triggered, a 
random person and their nearest grid neighbor are selected with the probabilities proportional to their 
current activity factors. These two people come in contact. When the contact involves an infected and a 
vulnerable person, the vulnerable person becomes infected with the probability P introduced above. 
Death occurs at a rate proportional to the product of the difference of the activity factor from 1 and the 
death rate M, which is fixed at 0.05 to approximate the observed fraction of fatal outcomes for COVID-
19. When persons are marked dead, they are excluded from further event processing. 

The rate of person-to-vehicle contacts is the product of the total human activity A and the person-to-
vehicle contact rate V. In this context, “vehicles” refer to public spaces (including public transportation 
vehicles and infrastructure), rather than personal vehicles. The person-to-vehicle contact rate does not 
vary with a specific person’s access to personal transportation. When a vulnerable individual comes in 
contact with a vehicle, the person becomes infected with probability P given above, which depends on 
the current vehicle infectivity. When an infected person comes into contact with a vehicle, the infectivity 
of that vehicle is incremented by the current infectivity of the infected person. The disinfection rate is 
the product of the number of vehicles Nv and the disinfection rate D. When a disinfection event is 
triggered, a random vehicle’s infectivity is set to 0. 

The simulation proceeds until the total infectivity of all people and vehicles is 0. At the end of the 
simulation, we measure the fraction of the population infected, the death fraction, and the total 
duration of the epidemic. 
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Table 1 summarizes all model parameters. The parameters that can be influenced by policy include the 
person-to-person contact rate C, the person-to-vehicle contact rate V, the number of vehicles Nv, and 
the vehicle disinfection rate D. For example, decision makers may employ social distancing and/or 
shelter-in-place orders to limit person-to-person contact and person-to-vehicle contact. Decision makers 
may also regulate the number of public transportation vehicles available and/or how often vehicles are 
disinfected. 

Table 1: Model parameters. 

Parameter Description 

Np Number of people 

Nv Number of vehicles 

τ1 Duration from a person’s infection onset to peak infectivity  

τ2 Duration from a person’s infection onset to recovery 

τ3 Characteristic time scale for the exponential decay of vehicle infectivity 

D Number of disinfections per day per vehicle 

V Person-to-vehicle contacts per day per person 

C Person-to-person contacts per day per person 

M Death rate 

λ Determines the likelihood of infection during an encounter 

 

Key Findings 

The simulation starts with a single infected individual, while every other person is vulnerable. Due to the 
stochastic nature of transmission, there is a non-zero probability that just a few other individuals are 
infected before the disease runs its course. However, if the number of infected individuals passes a 
certain threshold, the epidemic spreads until a significant fraction of the population has been affected. 
Therefore, the distribution of the ultimate infected population fraction is bimodal, as shown in Figure 2. 
The values of the model parameters are specified in the model description except for the person-to-
person contact rate C, person-to-vehicle contact rate V, vehicle disinfection rate D, and person per 
vehicle ratio R = Np/Nv. We verified that only this ratio is relevant because the results are unchanged if 
both the numbers of vehicles Nv and people Np are multiplied by the same factor. 
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Figure 2: The distribution of the epidemic size (infected population fraction) is bimodal in general. 

We quantify the epidemic by computing the probability that a significant fraction (defined as 5 percent) 
of the population will become infected before the epidemic runs its course. Figure 3 shows the 
dependence of this probability on the person-to-person contact rate C (a), person per vehicle ratio R (b), 
vehicle disinfection rate D (c), and person-to-vehicle contact rate V (d). The growth of the significant 
epidemic probability with the person-to-person contact rate C is self-evident. The qualitative trends in 
Figure 3b, 3c, and 3d can be understood in terms of the vehicle-to-person transmission. Vehicles serve 
as reservoirs of the pathogen that spread the infection to unaffected parts of the population because 
every person can come in contact with any vehicle with equal probability. The average vehicle infectivity 
declines with increasing the disinfection rate, decreasing the number of people per vehicle, and 
decreasing the person-to-vehicle contact rate, which leads to the behavior shown in Figure 3. A further 
quantification of the epidemic’s severity is the expected population fraction that will be infected during 
a substantial epidemic. The results presented in Figure 4 exhibit the same qualitative trends and can be 
explained via the same mechanisms as the probability of a substantial epidemic shown in Figure 3. 
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Figure 3: The probability of a substantial epidemic (in which more than 5 percent of the population is 

affected) as a function of the person-to-person contact rate C (a), ratio R of people per vehicle (b), 
vehicle disinfection rate D (c), and person-to-vehicle contact rate V (d). The values of the parameters 

that are not varied in each panel are C = 7, V = 1, D = 0.5, and R = 10. 
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Figure 4: The average population fraction that becomes infected in a substantial epidemic. The error 

bars denote one standard deviation from the mean epidemic size. 
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Next, we present the spread of disease under different conditions graphically. Table 2 displays a link to 
the video of each simulation scenario. In the videos, circles represent people, and rectangles represent 
vehicles. The color code is explained in Figure 5. The parameters that are varied include the person-to-
person contact rate C, person-to-vehicle contact rate V, number of people per vehicle R, and vehicle 
disinfection rate D. In the worst-case scenario, the virus quickly infects everyone, and the vehicles are 
highly infectious at the height of the epidemic. The rest of the videos show what happens when one or 
two of the variables are changed to try to mitigate the worst case. Decreasing the person-to-person 
contact rate to 1 person-to-person contact per day per person (C = 1) works (e.g., social distancing). 
Decreasing the person-to-vehicle contact rate to 1 person-to-vehicle contact every 10 days per person 
(V = 0.1) works (e.g., working from home). Increasing the vehicle disinfection rate to 5 disinfections per 
day per vehicle (D = 5) or decreasing the number of people per vehicle to 4 (R = 4) do not work by 
themselves, but doing both at the same time has a noticeable effect. 

Table 2: Videos depicting the epidemic graphically. 

Sample Video 
Simulations 

Parameters Outcome 

Video:  

Worst-case scenario  

10 person-to-person contacts per day per person (C = 10) 

1 person-to-vehicle contact per day per person (V = 1) 

1 disinfection every 10 days per vehicle (D = 0.1) 

20 people per vehicle (R = 20) 

Timeline: 156 days 

Population: 

92.8% infected 

88.8% recovered 

4% died 

Video:  

Decrease person-to-
person contact rate (C) 

1 person-to-person contact per day per person (C = 1) 

1 person-to-vehicle contact per day per person (V = 1) 

1 disinfection every 10 days per vehicle (D = 0.1) 

20 people per vehicle (R = 20) 

Timeline: 228 days 

Population: 

8.3% infected 

7.9% recovered 

0.4% died 

Video:  

Decrease person-to-
vehicle contact rate (V) 

10 person-to-person contacts per day per person (C = 10) 

1 person-to-vehicle contact every 10 days per person 
(V = 0.1) 

1 disinfection every 10 days per vehicle (D = 0.1) 

20 people per vehicle (R = 20) 

Timeline: 285 days 

Population: 

11.4% infected 

11% recovered 

0.4% died 

Video:  

Increase vehicle 
disinfection rate (D) 

10 person-to-person contacts per day per person (C = 10) 

1 person-to-vehicle contact per day per person (V = 1) 

5 disinfections per day per vehicle (D = 5) 

20 people per vehicle (R = 20) 

Timeline: 212 days 

Population: 

81.9% infected 

78.3% recovered 

3.6% died 

Video:  

Decrease number of 
people per vehicle (R) 

10 person-to-person contacts per day per person (C = 10) 

1 person-to-vehicle contact per day per person (V = 1) 

1 disinfection every 10 days per vehicle (D = 0.1) 

4 people per vehicle (R = 4) 

Timeline: 393 days 

Population: 

76.9% infected 

73.6% recovered 

3.3% died 

Video:  

Increase vehicle 
disinfection rate (D) and 
decrease number of 
people per vehicle (R) 

10 person-to-person contacts per day per person (C = 10) 

1 person-to-vehicle contact per day per person (V = 1) 

5 disinfections per day per vehicle (D = 5) 

4 people per vehicle (R = 4) 

Timeline: 377 days 

Population: 

50.9% infected 

48.3% recovered 

2.6% died 

https://www.dropbox.com/s/8h7iynuqif9zk7u/anim_C%3D10_V%3D1_D%3D0.1_R%3D20.avi?dl=0
https://www.dropbox.com/s/ff62bce99jvjpx2/anim_C%3D1_V%3D1_D%3D0.1_R%3D20.avi?dl=0
https://www.dropbox.com/s/8rhti5n8zib9ts5/anim_C%3D10_V%3D0.1_D%3D0.1_R%3D20.avi?dl=0
https://www.dropbox.com/s/o6ht9i5ghifmpjq/anim_C%3D10_V%3D1_D%3D5_R%3D20.avi?dl=0
https://www.dropbox.com/s/g14fxkipvvli814/anim_C%3D10_V%3D1_D%3D0.1_R%3D4.avi?dl=0
https://www.dropbox.com/s/vitxo3yl47q5qjl/anim_C%3D10_V%3D1_D%3D5_R%3D4.avi?dl=0
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Vehicles People 

 

Noninfected vehicle 

 

 Vulnerable person Infected person 

Person-to-vehicle contact 

 
 

 

 

 

An infected person can infect vehicles while 
infectious. 

Vehicle-to-person transmission 

 
 Dead person Recovered person 

A vulnerable person is exposed to an infected vehicle 
and becomes infected. Infected persons either die 
during the course of the disease (a) or recover (b). The 
probability of death is greatest at peak infectivity. 

Vehicle disinfection 

 

 

 

 

Vehicle infectivity decays exponentially with 
time (a) and/or vehicle is immediately 
uncontaminated by disinfection (b). 

Person-to-person contact 

 Dead person Recovered person 

A vulnerable person is exposed to an infectious person 
and becomes infected over time. Infected persons 
either die during the course of the disease (a) or 
recover (b). The probability of death is greatest at 
peak infectivity. 

Figure 5: Explanation of the graphical representation elements and the color code. Infectivity 
increases from deep blue (0) to light blue to light red to deep red (>1). 

(b) 

(a) 

(b) (a) 

(a) (b) 
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Conclusions 

In this project, we make a case for transportation vehicles and infrastructure as disease vectors. We 
present a demonstration model that shows the impact of the person-to-person contact rate, person-to-
vehicle contact rate, disinfection rate, and number of people per vehicle on the spread of disease. 
Reducing the person-to-person contact rate or the person-to-vehicle contact rate effectively limits 
disease spread. Increasing the vehicle disinfection rate or decreasing the number of people per vehicle 
does not work alone, but doing both simultaneously can have a substantial effect on the epidemic’s 
severity. Simplifying assumptions notwithstanding, the demonstration model shows that transportation 
can be modeled as a disease vector and that the person-to-person contact rate, person-to-vehicle 
contact rate, disinfection rate, and number of people per vehicle are important factors to consider when 
implementing disease control strategies in different transportation modes. Key strategies such as social 
distancing, shelter in place, disinfection of public transportation vehicles, and limitations on the number 
of people per vehicle are all very important in fighting the spread of disease through transportation. 

Policy and decision makers, scientific researchers, and practitioners are encouraged to use the concepts 
presented in this project brief to further explore the role of transportation vehicles and infrastructure as 
disease vectors and to investigate strategies to limit disease spread in this capacity. Another area for 
further investigation includes implementing material with antimicrobial properties (e.g., copper [Grass 
et al., 2011]) on frequently touched transportation surfaces and personal protective equipment. The 
demonstration platform presented here has the potential to be adapted to a transit network, city, 
metropolitan planning organization, or region. There is potential for practical applications if the 
demonstration model is, for example, calibrated with local data such as the structure of contact 
networks and the patterns of usage of shared spaces in public transportation systems. The platform has 
the potential to more fully inform decision makers as they develop strategies to effectively combat the 
spread of disease through the transportation system. 

The findings presented in this project brief pave the way for future research in the area of 
transportation as a disease vector with the goal of mitigating disease spread through transportation. 
Interdisciplinary work is warranted to reexamine how best to harden transportation assets to minimize 
the capacity to transmit disease. Transportation engineers, epidemiologists, infectious disease experts, 
biochemists, materials scientists, and others will need to collaborate to reimagine transportation 
aspects such as materials of construction and surface preparation. As the world continues to become 
more interconnected, it is important to continue understanding the impact transportation has on the 
spread of disease so that informed decisions can be made to stop or at least significantly reduce the 
spread of disease through transportation.  
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