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Executive Summary 
Vehicle emissions are major contributors to urban air pollution. Among many emission estimation methods and 
mitigation strategies, near-road air quality measurements serve as a fundamental method to understand the 
impact of the traffic emissions on ambient air quality and public health. In this project, we are particularly 
interested in utilizing near-road measurement data to analyze the impact of traffic, weather, and spatial 
parameters on the air quality in the near-road microenvironments.  

In this study, we obtained fine particulate matter (PM2.5) and nitrogen dioxide (NO2) measurement data (5-minute 
average) from two near-road air monitoring stations (AMSs) managed by the South Coast Air Quality Management 
District. The objective of this study was to examine the relationship between air quality and traffic and weather 
parameters. With air quality measurement spanning over 11 months, we attempted to gain a better understanding 
of the near-freeway air pollutant concentration, traffic speed, traffic flow, and weather parameters. 

We applied both multiple linear regression (MLR) and multivariate adaptive regression splines (MARS) models to 
examine the relationship among the weather conditions, traffic states, and near-freeway air pollutant 
concentrations. Both MLR and MARS showed that all weather parameters (e.g., relative humidity, temperature, 
wind) were significant variables. For the State Route 60 AMS, MLR gave the adjusted R2 as 0.077 and 0.264 for 
PM2.5 and NO2, respectively, and MARS gave the R2 as 0.19 and 0.53, respectively. For the Interstate 710 AMS, MLR 
gave the adjusted R2 as 0.035 and 0.324 for PM2.5 and NO2, respectively, and MARS gave the R2 as 0.11 and 0.62, 
respectively.  

Generally, NO2 concentration can be better explained by the selected variables than can PM2.5. The test of traffic 
speed segmentation indicates that the traffic speed has a considerable influence on near-road pollutant 
concentrations. When applying MLR and MARS models for winter months, the prediction performance for PM2.5 

improves significantly at both AMSs, but the improvement effect is moderate for NO2. We recommend that 
controlling seasonal weather variables can significantly improve PM2.5 prediction performance.  
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Background and Introduction 
Vehicle emissions are major contributors to urban air pollution. Because of the continued growth of vehicle use 
and greater occurrence of traffic congestion, vehicle emissions are predicted to grow in the coming years (1, 2). 
Among many strategies of emission estimation and subsequent mitigation, near-road air quality measurements 
serve as a fundamental method to understand the impact of traffic emissions on ambient air quality and public 
health. Extensive near-road measurement studies have been performed for a variety of research purposes, 
including examining the relationship among near-road air pollutants, exposure, and health effects (3, 4, 5, 6) as 
well as evaluating the effects of traffic-calming strategies (7, 8, 9).  

For this project, we were particularly interested in studies that utilized near-road measurement data to analyze the 
impact of traffic, weather, and spatial parameters on the air quality in the roadside or other microenvironments (2, 
10, 11, 12, 13). For example, Zhang et al. (2) found that hard vehicle acceleration can lead to an increase of 
hydrocarbon (HC) and carbon monoxide (CO) emissions due to the fuel-rich mode, while deceleration can increase 
particulate matter (PM) and HC emissions due to unburned fuel. Based on a year-long roadside measurement 
campaign, Kimbrough et al. (13) revealed that although the average wind speed appeared to be an important 
explanatory factor, the monthly average traffic volume and frequency of downwind conditions were not enough to 
explain the monthly average excess in monthly CO concentrations. Bigazzi et al. (11) combined 20-second-interval 
freeway traffic data and in-vehicle ultrafine particulate (UFP) concentration data and found that traffic states had a 
small but significant impact on in-vehicle UFP and that vehicle ventilation was the dominant influence on in-vehicle 
UFP concentration. 

In addition, near-road measurements can be applied to predict the near-road air quality or aggregated traffic 
emission factors based on models (14, 15, 16). For instance, Venkatram et al. (14) investigated near-road 
micrometeorology parameters and air quality measurements, with their dispersion model showing that the 
measured micrometeorology and air quality data agreed well with the predicted values. Choudhary and Gokhale 
(16) found that, during peak hour, emission factors of CO and HC were about four to seven times higher than 
during off-peak hours and that the emission factor of nitrogen oxides (NOx) was about two times higher than that 
of the off-peak hour. Wu et al. (15) applied a multivariate adaptive regression splines model to mobile air quality 
measurements and traffic data and identified 11 traffic-related variables that had the most impacts on in-source 
PM concentration prediction.  

In this study, we obtained fine PM (PM2.5) and nitrogen dioxide (NO2) measurement data (5-minute average) from 
two near-road air monitoring stations (AMSs) managed by the South Coast Air Quality Management District 
(SCAQMD). The object of this study was to examine the relationship between air quality and traffic and weather 
parameters. Using air quality measurements that spanned over 11 months, we attempted to gain better 
understanding of the near-freeway air pollutant concentration, traffic speed, traffic flow, and weather parameters. 

Approach 
We obtained 1-minute average concentrations of PM2.5 and NO2 from two near-roadway AMSs managed by 
SCAQMD (17). The locations of the two stations are marked in Figure 1a, with street view images in Figure 1b and 
1c. Figure 2 presents a more detailed image of each AMS in relationship to the traffic count data collected. 



 

2 

Data Acquisition 
Air Quality Data 
Air quality data were collected from two sites: 

1. Ontario SR-60 Near-Road (60NR) AMS, located at 2330 S. Castle Harbour Place, Ontario, CA 91761. 60NR 
is approximately 10 m south of California State Route 60 (SR-60) between the Grove Avenue and Vineyard 
Avenue exits (Figure 2a). The monitoring station is equipped with a Horiba APNA 370 NOx instrument for 
NO2 measurements and a Thermo-Scientific 5014i for continuous PM2.5 measurements (18). This site was 
selected by SCAQMD because this location is known for its high traffic congestion during weekdays. The 
typical traffic mix is dominated by light-duty vehicles.  

2. Long Beach I-710 Near-Road (710NR) AMS, located at 5895 Long Beach Boulevard, Long Beach, CA 90805. 
710NR is located 20 m east of Interstate 710 (I-710) between the exits for W. Del Amo Boulevard and 
Long Beach Boulevard (Figure 2b). The monitoring station is equipped with a Thermo-Scientific 42i NOx 
instrument for NO2 measurements and a Thermo-Scientific 5014i for continuous PM2.5 measurements 
(19). This site was selected by SCAQMD because this location is known for having a significant amount of 
heavy-duty trucks accounting for the majority of freeway traffic. 

The air quality data from the two AMSs were collected from January 2018 through November 2018. The 1-minute 
concentration values were then averaged to 5-minute values to match the time resolution of the traffic count data. 
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Figure 1. (a) Illustration of the SCAQMD near-roadway AMS sites selected for this study; (b) street view of 60NR 

AMS; and (c) street view of 710NR AMS. 

Meteorological Data 
Meteorological conditions are critical factors that influence ambient PM2.5 and NO2 concentration. The SCAQMD 
near-roadway AMS network also collects the following meteorological parameters: temperature, relative humidity, 
wind direction, and wind speed. The 1-minute meteorological data were collected from January 2018 through 
November 2018 and processed into 5-minute averaged data to match the time resolution of the traffic count data. 
We applied the arithmetic mean to concentration, humidity, and temperature. For wind speed and wind direction, 
the vector average method was used (20). 

Traffic Parameters 
The traffic metrics used in this study were obtained from the Caltrans Performance Measurement System (PeMS) 
(21). PeMS receives real-time 30-second raw measurements on traffic count and lane occupancy from each 
inductive loop detector (ILD) throughout the California freeway system. The system detects missing and invalid 
data and will correct the wrong values or fill in the missing data (22). Based on the traffic count and lane 
occupancy data for each lane, PeMS estimates an aggregated traffic speed at each ILD using the G-factor algorithm 
(23). Raw data are aggregated at different temporal levels (e.g., per 5 minutes, hourly, daily) in PeMS. PeMS also 
records the latitude and longitude of each vehicle detection station (VDS) and the corresponding postmile. Using 
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the PeMS “Station Metadata” and the nearest postmiles (Figure 2), we identified the nearest upstream and 
downstream VDS along both directions for both of the near-roadway AMSs. This study extracted the station-level 
5-minute aggregated data, including flow and speed at both directions and at both postmiles. Due to data 
limitation, 1-hour truck vehicle miles traveled (VMT) on the road section near the AMS was applied as the 
surrogate of 5-minute truck flow and repeated 12 times for each hour. Data processing is discussed in the next 
section. 

 

Note: (a) The SCAQMD site (red marker) adjacent to SR-60 and the corresponding postmiles (blue markers). Postmile A 
corresponds to PeMS abs Postmile 36.32 for SR-60 eastbound and PeMS abs Postmile 36.31 for SR-60 westbound. Postmile B 
corresponds to PeMS abs Postmile 37.65 for SR-60 eastbound and PeMS abs Postmile 37.64 for SR-60 westbound. (b) The 
SCAQMD site (red marker) adjacent to I-710 and the corresponding postmiles (blue markers). Postmile A corresponds to PeMS abs 
Postmile 6.04 for I-710 northbound and PeMS abs Postmile 5.99 for I-710 southbound. Postmile B corresponds to PeMS abs 
Postmile 7.17 for I-710 northbound and PeMS abs Postmile 6.93 for I-710 southbound. For both AMSs and each direction, 
Postmile A corresponds to the “Far-from-AMS” (Far) postmile, and B corresponds to the “Near-AMS” (Near) Postmile.  

Figure 2. Satellite images of the SCAQMD near-roadway AMSs selected for this study (source: Google Maps and 
PeMS). 

Data Preparation 
Data Cleaning 
The raw database obtained from near-road AMSs and PeMS required further data processing, including examining 
outliers, averaging values, and removing missing values.  

All the data were within the reasonable range, and there were no detectable outliers. For 5-minute average values, 
the entry was labeled as null if more than 3 data points were missing within the 5 minutes.  

After synchronizing 5-minute data for air pollutant concentration, traffic, and weather parameters, listwise 
deletion was applied to handle missing information; in other words, the row of data was removed if there were 
any null values (e.g., air pollutant concentration, traffic, or weather parameters) in the row. Since atmospheric 
pressure data were mostly missing, pressure values were excluded in the analysis for both stations.  
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Variable Transformation 
Box-cox transformation was performed to transform abnormal concentration values to a normal-distribution 
shape (24). Lambda of 0.5 was applied for PM2.5 concentration (µg/m3), and the comparison of before and after 
transformation is presented in Figure 3. Before the transformation, the PM2.5 concentration distribution had a 
skewness of 1.501 (Figure 3a), and after the transformation, it conformed much better to a normal distribution, 
with a skewness of 0.235 (Figure 3b). The box-cox transformation did not improve NO2 distribution and therefore 
was not applied to NO2 concentration values.  

The Pearson correlation coefficients were calculated to examine the linear relationship between any two 
numerical variables (25) to identify potential multicollinearity issues among the variables. The results indicated 
that the selected explanatory variables were not linearly related with each other.  

 
Figure 3. Histogram and Q-Q plot of PM2.5 before and after box-cox transformation with λ = 0.5. 

Method 
In this study, we visualized the air quality and traffic data based on various temporal scales to understand the 
fluctuation of the data. Further, two different regression models were applied to the database: (a) multiple linear 
regression (MLR), and (b) multivariate adaptive regression splines (MARS). All the regression models were 
performed using R version 3.5.1 (26). 

Multiple Linear Regression  
The MLR model is the simplest multivariate regression method that models the linear relationship between the 
explanatory variables on the observed traffic and meteorological parameters on PM2.5 and NO2 concentrations. The 
general equation for the MLR model can be written as: 

 𝑦𝑦 =  𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖   (1) 

where y represents the estimated model output; β0 is the intercept; βi is the regression coefficient associated with 
the i-th variable; xi is the value of the i-th variable (Table 1); and εi is an independent, normally distributed, random 
error with zero mean and constant variance (27). 
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Table 1. Description of the Explanatory Variables for 60NR and 710NR 
i 60NR 710NR unit 
0 Intercept — 
1 Relative Humidity % 
2 Temperature Fahrenheit 
3 Wind Speed mph 
4 Wind Direction Degree 
5 Speed West—Postmile A (Far) Speed North—Postmile A (Far) mph 
6 Speed West—Postmile B (Near) Speed North—Postmile B (Near) mph 
7 Speed East—Postmile A (Far) Speed South—Postmile A (Far) mph 
8 Speed East—Postmile B (Near) Speed South—Postmile B (Near) mph 
9 Flow West—Postmile A (Far) Flow North—Postmile A (Far) Vehicle/5 minutes 

10 Flow West—Postmile B (Near) Flow North—Postmile B (Near) Vehicle/5 minutes 
11 Flow East—Postmile A (Far) Flow South—Postmile A (Far) Vehicle/5 minutes 
12 Flow East—Postmile B (Near) Flow South—Postmile B (Near) Vehicle/5 minutes 
13 Weekly Timestamp — 
14 Truck VMT W Truck VMT N mph (applied as 5 minutes) 
15 Truck VMT E Truck VMT S mph (applied as 5 minutes) 

Multivariate Adaptive Regression Splines  
To further explore the impacts of selected variables, a nonparametric regression technique, the MARS model (28), 
was also applied to the dataset used in this study. Even though the statistical properties of the resulting estimators 
are more difficult to determine, compared to the MLR model, the nonparametric regression techniques require 
fewer assumptions and can provide a better fit than the parametric techniques. The following description of MARS 
references Wu et al. (15). The MARS model can also be considered as an extension of the linear models that 
automatically capture nonlinearities and interactions using the following equation: 

 𝑓𝑓(𝑥𝑥) =  ∑ 𝑐𝑐𝑖𝑖 ∗ 𝐵𝐵𝑖𝑖(𝑥𝑥)𝑖𝑖   (2) 

where f(x) is the estimated model output; and Bi(x) is the i-th basis function that can be a constant 1, a hinge 
function, or a product of two or more hinge functions. When using the hinge function, it can take the form: 

 max (0, 𝑥𝑥 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. )  (3) 

or 

 max (0, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.− 𝑥𝑥)  (4) 

and automatically partition the input data so that the effects of any outliers can be attenuated. The MARS model 
tends to have a good bias-variance tradeoff due to the flexible but sufficiently constrained form of the basic 
functions to model nonlinearity with relatively low bias and variance. 

Results 

Air Quality Data Visualization 
We plotted PM2.5 and NO2 concentrations at both stations based on several temporal scales—for example, the 5-
minute daily average from January to November, as shown in Figure 4. We also plotted the calendar view of daily 
average traffic volume, and we found that the road section near the 710NR station had undergone a 3-month road 
closure from January to March in 2018. The road closure event greatly impacted the traffic pattern and may have 
involved heavy-duty off-road equipment and excessive road dust that might interfere with the air quality data. 
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Therefore, in the subsequent analysis, we removed data from January 1 to March 16 from the 710NR station’s 
dataset.  

In consideration of the removed and missing data, we chose June as a representative month to present average 
concentration for each day of the week, and average concentration for each hour of the day, as displayed in Figure 
4, Figure 5, and Figure 6.  

 
Figure 4. Calendar plot of 5-minute daily average PM2.5/NO2 concentration at 60NR AMS (blank spaces in the 

middle of months mean missing data). 

Figure 4 reveals that the high PM2.5 concentration is more related to individual events (e.g., New Year’s Eve, July 
Fourth, etc.) rather than any specific pattern from day to day. In contrast, the NO2 concentration presents a 
noticeable difference between most weekdays and weekends—the daily average NO2 concentration is generally 
higher on weekdays and lower on weekends. This pattern can also be observed in Figure 5 and Figure 6.  
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Figure 5. Average PM2.5 concentration for each day of the week at 60NR AMS in June 2018. 

 
Figure 6. Average NO2 concentration for each day of the week at 60NR AMS in June 2018. 

Figure 5a displays the average concentration for each hour of the day on each day of the week. Figure 5b averages 
the concentration for each hour of the day for the entire month of June. Figure 5c shows the monthly average with 
a 95 percent confidence interval. Figure 5d shows daily average for each day of the week. The meaning of the 
subfigures also applies to Figure 6, Figure 8, and Figure 9. Figure 5d reveals a decreased PM2.5 concentration on 
weekends when compared with weekdays at the monthly average scale. However, the magnitude of decrease is 
much smaller than that of the NO2 concentration shown in Figure 6. 

The 710NR station shows a pattern similar to the 60NR station—the high PM2.5 concentration is more related to 
individual events (e.g., New Year’s Eve) and does not show much of a specific pattern from day to day. In contrast, 
the NO2 concentration presents a noticeable difference between most weekdays and weekends. 
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Figure 7. Calendar plot of daily average PM2.5/NO2 concentration at 710NR AMS. 

As mentioned in Section 4.1, data from January 1 to March 16 at the 710NR station were removed due to a road 
closure event. In consideration of the removed and missing data, we chose June as a representative month to 
present average concentration for each day of the week and average concentration for hour of the day, as 
displayed in Figure 8 and Figure 9.  

 
Figure 8. Average PM2.5 concentration for each day of the week at 710NR AMS in June 2018. 
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Figure 9. Average NO2 concentration for each day of the week at 710NR AMS in June 2018. 

Figure 8d depicts a slight decrease of average PM2.5 concentration on weekend days compared to that of 
weekdays. The average daily PM2.5 concentration for each day of the week (Figure 8d) does not fluctuate much, 
ranging from 12 to 15 µg/m3. Similar to the 60NR station, the weekend effects are more pronounced for NO2 
concentration than that of PM2.5 at the 710NR station. We attribute the different patterns of NO2 and PM2.5 to 
their secondary formation from major sources—during the weekday, traffic contributes to a majority of ambient 
NO, which is quickly photolyzed to NO2 (NO has a noontime lifetime of about 5 seconds) (29). Therefore, NO is 
photolyzed to NO2 by the time it reaches the sensors, so decreased traffic volume may have led to reduced NO2 
levels. On the other hand, a large portion of ambient PM2.5 is from secondary formation and may take hours 
depending on the chemical compounds, which makes PM2.5 levels more independent from traffic parameters than 
NO2. This finding is in line with the latest near-road research as well. For example, Seagram et al. analyzed 56 near-
road NO2 monitor stations and 31 PM2.5 near-road monitor stations. They found that annual mean PM2.5 
concentrations at the NR stations have little correlation with annual average daily traffic (AADT), although there is 
some evidence that annual mean NO2 concentrations increase with increasing AADT and fleet-equivalent AADT 
(30). 

Figure 5b and Figure 6b for the 60NR station show that both PM2.5 and NO2 concentrations undergo a continuous 
decrease from 7 a.m. to 12 p.m. However, this effect is not seen in Figure 8b and Figure 9b. A possible reason is 
that the 60NR station is located inland, where surface temperature as well as other local meteorological conditions 
change rapidly and lead to the continuous decrease. In contrast, the 710NR station is near the ocean, so the 
temperature changes are milder than those at the 60NR station, and the truck volume on I-710 is much larger than 
on SR-60. In summary, there are many factors that contribute to the similar and different patterns of both air 
pollutants at the two near-road AMSs. In the next section, the traffic patterns are briefly discussed. 

Traffic Parameter Visualization 
In this section, we plot the aggregated traffic speed (miles per hour) and traffic flow (vehicles per 5 minutes) for 
January to November in several time scales similar to those scales in Figure 5. Figure 10a displays the aggregated 
traffic speed for each hour of the day on each day of the week, Figure 10b averages the traffic speed for each hour 
of the day for 11 months, Figure 10c shows the monthly average, and Figure 10d plots the daily average for each 
day of the week. Both west- and eastbound on SR-60 are included in the figures, and the semi-transparent bars 
mark the 95 percent confidence interval. Figure 11 plots the traffic flow at similar temporal scales as those in 
Figure 10.  
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Figure 10. Aggregated traffic speed (mph) for each day of the week at SR-60 Postmile B in 2018. 

 
Figure 11. Average traffic flow (vehicle/5 minute) for each day of the week at SR-60 Postmile B in 2018. 

From Figure 10a/b and Figure 11a/b, we observe a clear traffic pattern designating the morning peak at around 7 
a.m. and the afternoon peak at around 5 p.m. on weekdays for both directions. For SR-60, both west- and 
eastbound traffic are mostly synchronized.  

For I-710, as shown in Figure 12a/b and Figure 13a/b, the southbound shows a morning peak, while the 
northbound shows an afternoon peak. Note that the truck traffic on I-170 is significantly larger than that on SR-60. 
As mentioned in Section 2.1.3, 1-hour truck VMT on the road section near the AMS was applied as the surrogate of 
5-minute truck flow. The average 1-hour truck VMT on SR-60 is 86 and 210 for east- and westbound traffic, 
respectively. On I-710, truck VMT is 907 and 807 for north- and southbound traffic, respectively. In the subsequent 
MLR and MARS model analysis, we exam the impact of the selected traffic parameters on the concentrations of 
near-road air pollutants. 
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Figure 12. Aggregated traffic speed (mph) for each day of the week at I-710 Postmile B in 2018. 

 
Figure 13. Average traffic flow (vehicle/5 minute) for each day of the week at I-710 Postmile B in 2018. 

MLR Model Results 
The results of MLR analyses for NO2 and PM2.5, measured from the two near-roadway AMSs, are shown in Table 2. 
At the 60NR AMS, the results indicated that for both PM2.5 and NO2, all the weather parameters were significant at 
the 5 percent α-level. Relative humidity and temperature were positively related to PM2.5 concentration; however, 
both were negatively related to NO2 concentration. Wind direction was negatively related to both pollutants’ 
concentration at the 60NR station, but the opposite was true for the 710NR station. Wind speed was positively 
related to both pollutant concentrations at both stations, and its coefficient’s magnitude was largest among all 
weather parameters, indicating that wind speeds are more impactful than other weather factors. 
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Table 2. List of Regression Coefficients for 60NR and 710NR MLR Analysis of PM2.5 and NO2 

 
Note: Variables in boldface are statistically significant at the 5% α-level. Data from January 1 through March 16 
were removed from 710NR due to a freeway closure event. For SR-60, the westbound direction is closer to the 
AMS. For I-710, the northbound direction is closer to the AMS. For any direction, Postmile B is closer to the AMS 
than Postmile A. Please refer to Figure 2. 

 

At the 60NR station, westbound traffic speed at Postmile B (near) and eastbound traffic speed at both postmiles 
were significant for both pollutants. At the 710NR station, all traffic flow and speed parameters were significant for 
NO2 concentration. A similar trend was found with PM2.5, except that the northbound traffic speed at 710 was not 
significant. We found that at the 60NR AMS, the coefficients of west-direction (which is closer to the AMS) speed 
at Postmile B (closer to the AMS) were negative, which means that the higher the traffic speed is, the lower the 
pollutant concentration will be. On the other hand, the speed of the same direction at Postmile A (farther from the 
AMS) was not significant for either pollutants. At the 710NR AMS, the coefficient of the north-direction (which is 
closer to the AMS) speed at Postmile B (closer to the AMS) was negative for NO2, but the same parameter was not 
significant for PM2.5. However, the coefficients of traffic flow were not consistent at either station. At both 
stations, truck VMT was significant for both pollutants with a positive coefficient, which means that more trucks 
lead to higher pollutant concentration. 

The adjusted R2 values for NO2 were much larger than the values of PM2.5, indicating that NO2 can be better 
explained by the explanatory variables than can PM2.5. Our preliminary explanation for this finding is that on-road 
traffic contributes a large portion to the ambient primary NO, which will be quickly photolyzed into NO2. On the 
other hand, a large percentage of PM2.5 comes from secondary formation; therefore, PM2.5 cannot be well 
explained by simultaneous traffic and weather factors. 

βi p-value βi p-value βi p-value βi p-value
Intercept 2.80E+00 < 2e-16 8.03E+01 < 2e-16 2.83E+00 < 2e-16 4.93E+01 < 2e-16

RH 7.54E-03 < 2e-16 -1.61E-01 < 2e-16 8.48E-03 < 2e-16 -2.56E-01 < 2e-16
Temperature 1.15E-02 < 2e-16 -2.03E-01 < 2e-16 5.88E-03 5.48E-13 -4.89E-01 < 2e-16
Wind Speed 3.29E-01 < 2e-16 3.62E+00 < 2e-16 2.44E-01 < 2e-16 5.71E+00 < 2e-16

Wind Direction -1.85E-03 < 2e-16 -2.81E-02 < 2e-16 5.36E-04 6.86E-12 5.25E-02 < 2e-16
Speed W/N - Postmile A (Far) 1.28E-02 0.213121 8.87E-02 0.338 -3.38E-02 0.0601 3.42E+00 < 2e-16
Speed W/N Postmile B (Near) -1.06E-01 < 2e-16 -1.49E+00 < 2e-16 -3.64E-03 0.7302 -2.18E+00 < 2e-16

Flow W/N Postmile A (Far) -8.28E-04 7.71E-12 1.75E-03 0.11 -1.14E-03 1.08E-10 -2.56E-02 < 2e-16
Flow W/N Postmile B (Near) 5.91E-04 2.28E-08 -1.31E-02 < 2e-16 7.56E-04 2.36E-05 -1.06E-02 3.44E-10
Speed E/S Postmile A (Far) -3.92E-02 0.003232 -1.60E+00 < 2e-16 -1.52E-01 < 2e-16 -3.12E+00 < 2e-16

Speed E/S Postmile B (Near) 1.11E-01 5.42E-16 -8.94E-01 5.03E-13 1.13E-01 1.73E-14 2.46E+00 < 2e-16
Flow E/S Postmile A (Far) -6.29E-04 0.000406 -7.70E-03 1.62E-06 3.04E-03 < 2e-16 4.12E-02 < 2e-16

Flow E/S Postmile B (Near) 2.03E-04 0.249995 1.06E-02 2.94E-11 -2.16E-03 < 2e-16 -2.41E-02 < 2e-16
Weekly Timestamp 5.19E-05 4.08E-11 2.02E-03 < 2e-16 4.34E-05 6.52E-06 2.14E-03 < 2e-16

Truck VMT W/N 1.75E-03 < 2e-16 1.73E-02 < 2e-16 3.44E-05 0.0375 6.22E-03 < 2e-16
Truck VMT E/S 9.40E-04 < 2e-16 3.36E-02 < 2e-16 5.12E-05 0.0125 2.67E-03 < 2e-16

Multiple R-squared
Adjusted R-squared

p-value
Degrees of Freedom

Residual Standard Error 1.242 11.21

I-710
PM2.5 NO2

0.03475 0.3244
0.03448 0.3242

< 2.2e-16 < 2.2e-16
52175 52175
1.236 11.69

0.07658 0.2641
< 2.2e-16 < 2.2e-16

80673 80673

SR-60
PM2.5 NO2

0.07675 0.2643
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The flow’s influence on the pollutant concentration was not consistent and cannot be well explained since traffic 
volume and speed are not linearly related, similar speed could reflect different traffic volume/congestion levels, 
and traffic volumes could be quite different for each road direction at the same time. To further consider the 
impact of traffic speed, in the following sections, we apply segmented regression and MARS.  

Figure 14 illustrates the comparison between observed and MLR-modeled NO2 and PM2.5 concentrations for both 
the 60NR and 710NR stations. We found that for PM2.5, the range of values was from near zero to approximately 
100 µg/m3 (since box-cox transformation was applied to PM2.5, the original values are the square of that on the x- 
and y-axis), and a cluster of points stood outside of the point cloud. For NO2, the range of values was from near 
zero to approximately 70 ppb, and the cluster was tighter with fewer scattered points.  

 

Note: Since box-cox transformation was applied to PM2.5, the values on the x- and y-axis are the original 
values’ square root. 

Figure 14. Predicted vs. observed graphs using the MLR model: (a) 60NR PM2.5; (b) 60NR NO2; (c) 710NR PM2.5; 
and (d) 710NR NO2. 

Traffic Speed Segmentation 
Due to the nonlinearity between traffic speed and volume, segmenting the traffic speed can help better 
understand the impact of traffic speed and volume. Three speed ranges were tested using the MLR model. As 
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shown in Table 3, for example, considering SR-60 westbound, we assumed that congestion would occur when all 
speeds became less than 30 mph at both postmiles, and free-flow status would return when all speeds were 
greater than or equal to 45 mph in the westbound direction, with no speed constraints for the eastbound 
direction. One transition range between 30 to 45 mph was considered. The numbers in parentheses represent the 
number of data rows in this speed range. 

Table 3. MLR Adjusted R2 Values for 60NR and 710NR Speed Segment Results 

 

Note: Green cells mark those adjusted R2 values that are larger than the ones in Table 2. 

 

We found that for I-710, segmenting speed improved for nearly all adjusted R2 values compared to the values 
shown in Table 2, except for PM2.5 northbound in the range of congestion. For SR-60, R2 values of PM2.5 improved 
in the congestion and transition range; on the other hand, R2 values of NO2 improved in the free-flow range. 
However, the improvements were slight for NO2 and moderate for PM2.5. One challenge or limitation of such an 
analysis is the need to characterize traffic states in both directions, which can be very different (e.g., traffic speed, 
total flow, and truck flow might vary significantly on north- and southbound lanes of a freeway) and have a 
combined influence on the near-road concentrations. In response to this limitation, measuring near-road CO2 
concentration can help quantify out-of-tailpipe traffic emissions, which can serve as an impactful surrogate in 
addition to existing traffic parameters. 

MARS Model Results 
In Table 4, the results for PM2.5 indicate that the important explanatory variables included all meteorological 
parameters—westbound traffic speed for Postmile B (closest to the AMS), eastbound traffic speed for Postmile A 
(farther from the AMS), and truck flow in both directions. For NO2, the significant variables also included all the 
meteorological parameters—eastbound traffic speed for Postmile A (farther/downstream of AMS) and truck 
volume on the eastbound lanes. The weekly timestamp was significant for both pollutants. 

The variable of importance and the values in the corresponding basic functions represent the associated values 
that are critical to the partitioning for that set of explanatory variables. For example, for PM2.5 (as shown in Table 
4), 0.74 mph was a critical partitioning point for the wind speed values. The R2 values were 0.19 for PM2.5 and 0.53 
for NO2, which were much improved compared to the values of the MLR model. 

PM2.5 NO2 PM2.5 NO2 PM2.5 NO2 PM2.5 NO2

0.07694 0.2882 0.07586 0.3025 0.03724 0.3551 0.05088 0.3735
(72,603) (72,603) (71,998) (71,998) (46,892) (46,892) (43,859) (43,859) 
0.1185 0.1466 0.1312 0.1111 0.03647 0.3888 0.06585 0.5043
(3,707)   (3,707)   (6,767)   (6,767)   (4,607)   (4,607)   (3,237)   (3,237)   

0.1379 0.1535 0.1036 0.1479 0.03215 0.4255 0.09963 0.4537
(1,577)   (1,577)   (852)      (852)      (3,762)   (3,762)   (2,134)   (2,134)   

30 - 45 MPH Transition

< 30 MPH Congestion

> 45 MPH Free-Flow

(number of data points)

MLR model SR-60 I-710
adjusted R2 values SR-60 West SR-60 East I-710 North I-710 South
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Table 4. List of Basic Functions and the Associated Coefficients for MARS Analysis at 60NR AMS 

 
Note: RH = relative humidity; WS = wind speed; WD = wind direction. Variables in boldface are statistically significant 
at the 5% α-level. Data from January 1 through March 16 were removed from 710NR due to a freeway closure event. 
For SR-60, the westbound direction is closer to the AMS. For I-710, the northbound direction is closer to the AMS. For 
any direction, Postmile B is closer to the AMS than Postmile A. Please refer to Figure 2. 

 

Similar to the MARS results at the 60NR AMS and previous MLR results, all the meteorological parameters were 
important variables for near-road concentrations. For the traffic parameters, Table 5 shows that the variables of 
importance were northbound traffic speed at Postmile A (farther from the AMS), southbound speed at both 
postmiles, and southbound flow at both postmiles for PM2.5. For NO2, except for southbound traffic speed and 
volume at Postmile B (closer to the AMS), all other variables were significant. Therefore, the northbound traffic 
conditions, which the AMS is directly next to, always play an important role in the near-road pollutant 
concentration. The R2 values were 0.11 for PM2.5 and 0.62 for NO2, respectively. When comparing the MARS results 
for NO2 (Table 4 and Table 5), 710NR had a higher R2 value than 60NR. When comparing the MARS results for PM2.5 
(Table 4 and Table 5), the R2 value for the 60NR was higher than the value of 710NR. The comparisons are 
consistent with observations based on the MLR results. 

c βi c βi
Intercept 43.355016 Intercept 17.130823

max(RH-22.0705) -0.066942 max(28.9611-RH) -0.427762
max(36.2282-RH) -0.095664 max(RH-28.9611) -0.357562
max(RH-36.2282) 0.068511 max(80.0102-T) 0.365037
max(RH-93.2093) -0.167041 max(T-80.0102) 0.22911
max(37.4461-T) 0.096897 max(0.56077-WS) -52.210679
max(T-37.4461) 0.026512 max(WS-0.56077) 13.867884

max(0.739848-WS) -2.006632 max(WS-0.835207) -12.999226
max(WD-95.2485) -0.009671 max(WD-51.1709) 0.285913
max(WD-202.809) 0.006859 max(WD-105.405) -0.289689
max(287.111-WD) -0.001935 max(WD-216.329) 0.238612
max(WD-287.111) 0.015549 max(WD-241.484) -0.450622

max(8.11172-Speed West_Postmile B Near) 0.105193 max(WD-292.524) 0.579614
max(Speed West_Postmile B Near)-8.11172) 0.275016 max(305.89-WD) 0.071572

max(Speed East_Postmile A Far-7.7846) -0.317208 max(WD-305.89) -0.243614
max(658-Weekly Timestamp) -0.000498 max(8.18535-Speed East_Postmile A Far) 2.703334
max(Weekly Timestamp-658) -0.00004 max(786-Weekly Timestamp) -0.012033

max(Truck VMT W-26.4) -0.113277 max(Weekly Timestamp-786) -0.000492
max(137.4-Truck VMT W) -0.110027 max(Weekly Timestamp-1646) -0.03758
max(Truck VMT W-137.4) 0.11419 max(Weekly Timestamp-1871) 0.08592

max(Truck VMT E-6.7) -0.146963 max(82.4-Truck VMT E) -0.098167
max(179.3-Truck VMT E) -0.146638
max(Truck VMT E-179.3) 0.149305

60NR
PM2.5 NO2

R-squared: 0.1904561 R-squared: 0.5312249
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Table 5. List of Basic Functions and the Associated Coefficients for MARS Analysis of PM2.5 and NO2 at 710NR 
AMS 

 
Note: RH = relative humidity; WS = wind speed; WD = wind direction. Variables in boldface are statistically significant 
at the 5% α-level. Data from January 1 through March 16 were removed from 710NR due to a freeway closure event. 
For SR-60, the westbound direction is closer to the AMS. For I-710, the northbound direction is closer to the AMS. For 
any direction, Postmile B is closer to the AMS than Postmile A. Please refer to Figure 2. 

 

Figure 15 plots the comparison between observed and MARS-modeled NO2 and PM2.5 concentrations for both 
60NR and 710NR. Similar to the MLR model, the point cloud for PM2.5 was quite spread out but much improved 
when compared to Figure 14. On the other hand, the cluster of NO2 points was tighter, with fewer scattered 
points. The overall prediction performance of MARS was better than the performance of MLR. 

c βi c βi
Intercept 3.1635616 Intercept 310.184339

max(30.2091-RH) -0.0473251 max(RH-8.79354) -4.153581
max(RH-30.2091) 0.003585 max(79.1806-RH) -3.848194
max(64.7211-T) 0.0355646 max(RH-79.1806) 4.154356
max(T-64.7211) 0.0234869 max(71.8221-T) 0.452492

max(0.478509-WS) -4.1550809 max(T-71.8221) -0.036345
max(WS-0.478509) 1.0825181 max(0.642452-WS) -57.81688
max(WS-0.824119) -1.0302907 max(WS-0.642452) 7.111035
max(136.504-WD) 0.0031257 max(WS-1.24702) -6.32268
max(WD-136.504) 0.0019277 max(116.093-WD) 0.139704

max(7.93725-Speed North_Postmile A Far) 0.0882385 max(WD-116.093) -0.035096
max(Speed North_Postmile A Far-7.93725) -0.5610164 max(WD-160.074) 0.284674
max(8.11788-Speed South_Postmile A Far) 0.0945724 max(WD-244.785) -0.386951
max(Speed South_Postmile A Far-8.11788) -0.6947021 max(WD-275.257) 0.148825

max(7.42967-Speed South_Postmile B Near) 0.1067995 max(7.38918-Speed South_Postmile A Far) 1.203326
max(Speed South_Postmile B Near-7.42967) 0.6204591 max(Speed South_Postmile A Far-7.38918) -8.721842

max(318-Flow South_Postmile A Far) -0.0061712 max(7.16938-Speed South_Postmile B Near) 0.810981
max(Flow South_Postmile A Far-318) -0.000642 max(Speed South_Postmile B Near-7.16938) 8.967516

max(232-Flow South_Postmile B Near) 0.0054507 max(Weekly Timestamp-522) -0.009979
max(Flow South_Postmile B Near-232) -0.0007401 max(1485-Weekly Timestamp) -0.011478

max(164.5-Truck VMT S) -0.0033027 max(Weekly Timestamp-1485) -0.004477
max(Truck VMT S-164.5) 0.000155 max(574.6-Truck VMT N) -0.013503

max(Truck VMT N-574.6) 0.00264
max(209.9-Truck VMT S) -0.022962
max(Truck VMT S-209.9) 0.001861

I710
PM2.5 NO2

R-squared: 0.1095426 R-squared: 0.6201496



 

18 

 
Note: Since box-cox transformation was applied to PM2.5, the values on the x- and y-axis are 
the original values’ square root. 

Figure 15. Predicted vs. observed graphs using the MARS model: (a) 60NR PM2.5; (b) 60NR NO2; (c) 710NR PM2.5; 

and (d) 710NR NO2. 

Seasonal Fuel Blend Effects 
To examine the seasonal fuel blend effects, we utilized California’s gasoline blend regulation to determine the 
months of summer and winter. California’s Phase 2 Reformulated Gasoline (CaRFG2) and Phase 3 Reformulated 
Gasoline (CaRFG3) regulations require refiners to produce gasoline that meets eight specifications to reduce air 
pollution from the gasoline used in motor vehicles. One of the eight specifications is a standard for Reid vapor 
pressure, which is designed to reduce evaporative emissions during the summer months when ambient 
temperatures are their highest (31, 32). 

According to the regulations, the summer fuel blend months for Southern California are April 1 through October 
31, and winter fuel blend months are November 1 through March 31 of the next year. Therefore, we determined 
the summer and winter months based on the specified months of each fuel blend. We performed MLR and MARS 
models on the summer and winter months, and the results are summarized in Table 6. 
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Table 6. MLR and MARS Model R2 for All Data, Summer, and Winter Months 

 

Note: Green cells mark those adjusted R2 values that are larger 
than the results of MLR all. Blue cells mark those adjusted R2 
values that are larger than the results of MARS all. 

 

We found that when applying models to winter months, the prediction performance for PM2.5 improved 
significantly. However, the improvement of applying winter months was moderate for NO2. In contrast, applying 
the models to the summer season did not increase the R2 or only led to slight improvements.  

We examined the monitoring data from a regular AMS (Mt. Rubidoux Monitoring Station) within 10 mi of the 60NR 
station. We attempted to compare the pollutant concentration at the Mt. Rubidoux station to the concentration at 
the 60NR station, and we found that even though the concentration values at the Mt. Rubidoux station were 
generally smaller than the values at the 60NR station, including the values at the Mr. Rubidoux station as 
background values made the prediction performance much worse. Therefore, we did not further examine the 
background concentration. We believe that the correct background concentration will provide new insights on the 
contribution of mobile sources, especially for PM2.5. 

Conclusions and Recommendations 
We applied both the MLR and MARS models to examine the relationship among the weather conditions, traffic 
states, and near-freeway air pollutant concentrations. Both the MLR and MARS models showed that all weather 
parameters (e.g., relative humidity, temperature, wind) were significant variables. For the SR-60 AMS, the MLR 
model gave the adjusted R2 as 0.077 and 0.264 for PM2.5 and NO2, respectively, and the MARS model gave the R2 as 
0.19 and 0.53, respectively. For the I-710 AMS, the MLR model gave the adjusted R2 as 0.035 and 0.324 for PM2.5 

and NO2, respectively, and the MARS model gave the R2 as 0.11 and 0.62, respectively.  

We found that when applying models for winter months, the prediction performance for PM2.5 improved 
significantly. However, the improvement of applying winter months was moderate for NO2. In contrast, applying 
models for the summer season did not increase the R2 or only led to slight improvements.  

To potentially explain the results, we refer to the air quality management plan released by SCAQMD every few 
years, which states, “Elevated PM10 and PM2.5 concentrations can occur in the South Coast Air Basin throughout 
the year but occur most frequently in fall and winter. Although there are some changes in emissions by day-of-
week and season, the observed variations in pollutant concentrations are primarily the result of seasonal 
differences in weather conditions” (33). Based on previous research, the latest near-road monitoring results, and 
our modeling analysis, we recommend that in addition to examining background concentration, controlling 
seasonal weather variables can potentially significantly improve PM2.5 prediction performance. Furthermore, in 
response to the limitation of characterizing traffic states in both directions, measuring near-road CO2 

R2 PM2.5 NO2 PM2.5 NO2

MLR all 0.077 0.264 0.035 0.324
MARS all 0.190 0.531 0.110 0.620

MLR Summer Months 0.086 0.275 0.026 0.270
MLR Winter Months 0.104 0.173 0.202 0.429

MARS Summer Months 0.166 0.527 0.094 0.597
MARS Winter Months 0.309 0.551 0.324 0.697

SR-60 I-710



 

20 

concentration can help quantify out-of-tailpipe traffic emissions, which can serve as an impactful surrogate in 
addition to existing traffic parameters.  

Outputs, Outcomes, and Impacts 
Outputs: We demonstrate that controlling seasonal weather variables can potentially improve PM2.5 and NO2 
prediction performance based on weather and traffic data.  

Research Outputs, Outcomes, and Impacts 
• Peer-reviewed publications. 

o Extended Abstract: 

Moretti, Ayla, Ji Luo, Guoyuan Wu, Brandon Feenstra, Kanok Boriboonsomsin, and Matthew 
Barth. Understanding Air Quality Data, Traffic, and Weather Parameters Collected from Near-Road 
Stations. Transportation Research Board Annual Meeting. No. 19-03343. 2019. 

• Presentations at conferences and technical meetings. 

o Poster Presentation: 

Moretti, Ayla, Ji Luo, Guoyuan Wu, Brandon Feenstra, Kanok Boriboonsomsin, and Matthew 
Barth. Understanding Air Quality Data, Traffic, and Weather Parameters Collected from Near-Road 
Stations. Presented at Transportation Research Board Annual Meeting, No. 19-03343, Washington, 
D.C., January 2019; and at Center for Advancing Research in Transportation Emission, Energy, and 
Health Symposium, Austin, Texas, February 2019. 

Technology Transfer Outputs, Outcomes, and Impacts 
We processed datasets of 5-minute air quality, traffic, and meteorological parameters for 11 months in 2018. The 
data can serve as training samples for future air pollutant concentration modeling.  

Education and Workforce Development Outputs, Outcomes, and Impacts 
Ayla Moretti is the PhD candidate who has worked on this project. Ayla has been actively involved in data 
processing, statistical modeling, and R/MATLAB scripting and performed most of the work during the project. Ayla 
has also won the CARTEEH Student of the Year award and successfully presented the study at two conferences in 
2019.  
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