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Executive Summary 

This project devised an optimization method to site variable message signs (VMSs) for traffic incident 
management. The optimization objective is to maximize the economic utility of each VMS, considering both the 
monetary value of time and value of emissions. The method includes an integrated traffic and emissions simulation 
module and an optimization module that stochastically sample from real-world incident data. The method was 
applied to El Paso, Texas, as a case study. The case study demonstrated convergence of the optimization process, 
arriving at a stable set of optimal sites given various input assumptions. The optimally sited VMSs showed 
favorable societal return on investment in congestion relief and emissions reduction. Ten optimally sited VMSs can 
save around $1.3 million a year in time savings and emissions reduction through diverting traffic after roadway 
crashes, assuming a medium monetary value of time and emissions.  

The optimization methodology is implemented as an automated modeling pipeline referred to as TEMPO-Safety. 
The framework consists of four tools—the crash road matching algorithm, the stochastic crash generation 
algorithm, the potential VMS location algorithm, and the optimal VMS locator. This suite of tools allows a user to 
draw from a roadway crash database, in this case managed by the Texas Department of Transportation; assemble 
a stochastic representation of crash likelihood for each roadway link; identify plausible locations of VMSs; and 
select optimal VMS locations based on crash likelihood and associated congestion and emissions impacts. 

The methodology and resulting TEMPO-Safety suite can be applied to other metropolitan areas, especially within 
Texas considering the consistency in the roadway crash database. The optimization methodology can be further 
extended to other infrastructure siting decisions. 
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Background and Introduction 

Variable message signs (VMSs) are a key component of intelligent 
transportation system (ITS) technologies and, more specifically, a real-
time traveler information tool. Estimated travel times on freeways, 
corridor congestion, construction and maintenance schedules, special 
event instructions, and incident notifications can be conveyed through 
VMSs. Previous studies of VMSs mostly focused on the impact of VMSs 
on network performance (Chatterjee et al., 2002; Lam and Chan, 1996; 
Shi et al., 2009). Few studies have been conducted to associate VMSs 
with environmental effects, specifically emissions reduction (Hoye et al., 
2011). A 2006 study estimated a 9.2 percent reduction in fuel consumption and an 8.7 percent reduction in CO2 
after implementing a VMS route strategy during incidents (Dia and Cottman, 2006). Later, a 2017 study found 
traffic management tools and VMS guidance can reduce black carbon emission by up to 3% (Mascia et al., 2017). 
Also, the highest performance gain and emissions savings occur when VMS locations are wisely selected (Fan et al., 
2018; Shang and Huang, 2007). Thus, the allocation of the VMS is the key to an optimized network. 

While most traffic agencies use engineering judgment to locate VMSs in the network, some research has been 
conducted on the optimization of VMS locations to maintain various objectives (maximizing information/guidance 
or minimizing delay). Generally, three levels of optimization can be considered regarding VMS locations: 

1. Optimal selection of the locations to install a new VMS: Most studies focus on finding optimal locations 
to place within a network without VMSs (Abbas and McCoy, 1999; Chiu and Huynh, 2007; Chiu et al., 
2001; Fan et al., 2018; Gan et al., 2011; Shang and Huang, 2007; Xiangjun and Honghui, 2011; Zhang and 
Gao, 2012). These studies used a theoretical or simulation-based model to find the VMS locations that 
maximize benefits (guidance) or minimize network delay. 

2. Optimal selection of the existing VMS board to present received information: To find the optimal VMS 
locations to provide guidance, we may either a) evaluate the individual impacts of existing VMS boards to 
find the one with the most guidance benefits, or b) optimize VMS locations considering a network with no 
VMS and map it to the real-world VMS system. A 2017 study estimated the black carbon emission impact 
for a whole VMS system in the network (Mascia et al., 2017). A 2011 study implemented the second path 
and optimized VMS locations for a perfect network and mapped it to the real construction plan for VMS 
(Xiangjun and Honghui, 2011). 

3. Optimal selection of a set of VMS boards: All previously mentioned studies consider adding a new set of  
VMS boards or evaluating the impacts of the existing VMS boards. However, most cities have a set of 
exiting VMS boards functioning in the network. Therefore, a real optimal set should integrate these two 
sets and find the new locations for VMS boards while considering the impact of the existing VMS boards in 
the network. This is the main research gap in optimizing VMS locations. 

Other than the aforementioned lack of research in the third level of VMS location optimization, previous studies 
have some other gaps that can be better addressed for the future: 

• The objective function of the previous optimization models was either minimizing travel time and delay or 

maximizing guidance information (Gan et al., 2011; Si et al., 2017; Xiangjun and Honghui, 2011; Zhang and 

Gao, 2012). No studies have assessed the emissions savings from the proposed optimization models. 

• Previous case studies usually assumed crash events for VMS location optimization. Few studies obtained 

real-world historical recurring congestion data (Abbas and McCoy, 1999; Chiu and Huynh, 2007; Chiu et 

al., 2001; Si et al., 2017; Zhang and Gao, 2012).  

• Previous studies implemented the optimization algorithm on a small region or corridor, rather than an 

actual network (Chiu and Huynh, 2007; Chiu et al., 2001; Fan et al., 2018; Gan et al., 2011; Si et al., 2017; 

Xiangjun and Honghui, 2011; Zhang and Gao, 2012). 

CARTEEH QUICK FACTS 

CARTEEH is a Tier 1 University 

Transportation Center, funded 

by the U.S. Department of 
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• Previous studies suggested ideally optimal VMS locations, rather than a set of optimal locations based on 

the existing VMS boards (Fan et al., 2018; Gan et al., 2011; Xiangjun and Honghui, 2011; Zhang and Gao, 

2012). 

Therefore, this study has devised a bi-level emission-based algorithm to select the optimal VMS locations within a 
network. The lower level uses multiple sources of real incident data and searches for the optimal locations from 
the potential VMS locations. The next level conducts a delay- and emission-based utility assessment for the 
installation of a new VMS board at an optimal location and finds a proposed set of VMS locations. The benefit of 
installing a new VMS board is emissions savings though the agency may have to pay the purchase cost and 
maintenance fee. Table 1 shows how this proposed methodology addresses the research gaps and CARTEEH 
priority areas. 

Table 1. Key Research Gaps and Addressed Solutions 

Key Aspect Current Research Gap Solution Provided in This Study Addressed Priority Area 

1 
No assessment of 

emissions savings or 
monetary cost 

The optimization is based on the 
emissions savings and VMS board cost 

Impact assessment 

2 
No real-world data 
incorporated in the 

optimization algorithm 
Real-world incident data are obtained Data integration 

3 
No actual or big-scale 

networks 

The algorithm is built on existing 
optimization models to work for any 

region scale and is applied to the El Paso 
network as a case study 

Modeling studies 

4 
No set of optimal VMS 

locations 

The second level of optimization searches 
for the set of optimal VMS locations 

among existing and ideal board locations 
Modeling studies 
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Methodology 

The current study proposed and developed a transferable optimization platform, termed TEMPO-Safety, to search 
for the VMS board locations. TEMPO-Safety integrated the Transportation and Emissions Modeling Platform for 
Optimization (TEMPO) into a new pipeline for maximizing congestion reduction and emissions reduction from the 
installation of VMS boards at proposed locations using historical incident data. Further, the TEMPO-Safety pipeline 
was applied to the El Paso network. Therefore, the following goals of the study were achieved: 

1. Crash warning framework development and data integration platform. 
2. Stochastic emissions reduction calculation for crash events. 
3. Optimal selection of the locations using congestion reduction and emissions reduction. 
4. A large-scale case study for El Paso. 

Figure 1 illustrates the TEMPO-Safety framework and integrated databases and algorithms. The following sections 
introduce each element of the framework, including the data structure and inputs, TEMPO, and algorithms for 
crash analysis and optimization. 
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Figure 1. TEMPO-Safety framework. 
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Crash Warning Database 

The crash warning database in the TEMPO-Safety framework integrates five datasets from four different official 
sources for the El Paso network. The datasets are: 

• Dataset 1: Crash Records. 

• Dataset 2: Network Grid. 

• Dataset 3: Origin-Destination Demand. 

• Dataset 4: Existing Variable Message Sign Locations. 

• Dataset 5: Duration and Capacity Reduction of Road Closures. 

Dataset 1: Crash Records 
Historical crash records may be obtained from police officers’ crash reports. These reports detail the crash 
location, time, and severity. El Paso crash events were obtained from the Texas Department of Transportation 
(TxDOT) Crash Record Information System from 2014 to 2018, for a total of 109,145 crashes. The number of 
reportable crashes (on-road crashes with property damage of more than $1000) with available coordinates was 
82,819. Figure 2 shows the distribution of these crashes based on crash severity over the years. 

 

Figure 2. Distribution of crash severity over years. 

Dataset 2: Network Grid 
Texas A&M Transportation Institute researchers configured a mesoscopic dynamic traffic assignment model for the 
current El Paso network (Shelton and Nava, 2009) using El Paso’s metropolitan planning organization (MPO) 
roadway network configuration and land use. The El Paso network configuration includes the roadway system’s 
geometry and link specifications, especially the street names and lengths. The roadway configuration was 
iteratively quality assured and updated during previous studies (Shelton et al., 2014; Vadali et al., 2015) and the 
current study to represent the most accurate and updated roadways, traffic movements, and traffic flow. The 
latest version of the El Paso network includes 836 traffic analysis zones, 5667 nodes, and 9865 roadway links. 
Detailed characteristics of each roadway, including length and operational classification, are incorporated into the 
crash warning database (Figure 3). 
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Dataset 3: Origin-Destination Demand  
Travel demand data for the El Paso region were developed using the El Paso MPO regional travel demand models. 
The origin-destination demand data were a time-series matrix of the number of trips between every two zones for 
each vehicle type and aggregated for each hour of the day. The total number of 24-hour trips in the El Paso region 
was 2,491,515 trips. 

Dataset 4: Existing Variable Message Sign Locations  
The list of operational VMS locations was retrieved from TxDOT’s ITS inventory. The coordinates for each location 
were quality assured using the most recent El Paso map and projected into the corresponding roadway in the El 
Paso network grid. In some cases, a single VMS was viewable from more than one roadway and was considered for 
projection to all relative roadways. The El Paso road system had a total of 80 VMSs and was included in the crash 
warning database, as illustrated in Figure 3. 

 

Figure 3. Existing VMS locations in the El Paso region. 

Dataset 5: Duration and Capacity Reduction of Road Closures 
Crash events may lead to road closures and capacity reduction for an incident clearance duration and beyond. The 
clearance duration and capacity reduction have been the focus of various studies (Brown et al., 2020; Gopinath et 
al., 2016; Haule et al., 2019; Ji et al., 2014). The crash warning database used previous literature (Li et al., 2017; 
Won et al., 2018), real-world crash reports, and current practices in the El Paso region to develop the clearance 
duration and capacity reduction of crashes based on their severity. Table 2 shows the clearance duration and 
capacity reduction after the crash event for each class of crash severity. 

Table 2. Clearance Duration and Capacity Reduction of Crash Severity Levels 

Crash Severity Clearance Duration Capacity Reduction 

Fatal 120 0.75 

Incapacitating 90 0.75 

Non-incapacitating 75 0.5 

Possible injury 60 0.5 

Not injured 45 0.25 

Unknown 30 0.25 

Traffic and Emissions Modeling 

Robust analysis of the emissions impacts of crashes requires rapid traffic and emissions simulation runs. Crash days 
were drawn from the crash warning database to establish a representative sample of crash occurrences. 
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Researchers then ran TEMPO to simulate the traffic impact and the resulting emissions impact. TEMPO is a cloud-
based modeling platform for integrating and automating a suite of transportation, energy, and emissions models 
that provides sound evidence for optimized infrastructure decision-making to regulators and policymakers (Sharifi 
et al., 2021).  

In TEMPO, traffic patterns are simulated with a mesoscopic dynamic traffic assignment (DTA) model. The DTA 
model analyzes the movement of individual vehicles (as in microscopic models) while using macroscopic traffic 
flow theories without complicated vehicle interactions (Chiu et al., 2011). Vehicle emissions are modeled with 
MOVES-Matrix (Liu et al., 2019). In addition to the modeling tools, TEMPO has the essential database for each step 
of the modeling. Traffic assignment and emissions estimation evaluation depend on many other factors than the 
travel demand and vehicle activity in the system, including the traffic flow model, age distribution of the vehicles, 
and meteorological metrics. 

The main strength of using the TEMPO pipeline in the current study compared to the previous approaches is the 
efficiency in running time to assess the emissions impacts of generated crash scenarios. TEMPO can estimate the 
traffic and emissions impacts of 50 crash scenarios in an acceptable time frame and overcome the disconnection 
between traffic activity and emissions impact models caused by resolution mismatch and processing of resources 
(Sharifi et al., 2021).  

TEMPO-Safety Tools 

The current study developed the following four tools, referred to as the TEMPO-Safety framework, to adapt 
TEMPO for assessing the impacts of crash warning systems such as VMS: 

• Tool 1: Crash Road Matching Algorithm. 

• Tool 2: Stochastic Crash Generation Algorithm. 

• Tool 3: Potential Variable Message Sign Location Algorithm. 

• Tool 4: Optimal Variable Message Sign Locator. 

Tool 1: Crash Road Matching Algorithm  
The crash road matching tool was developed and implemented to project each crash record to the correct road 
segment in the network. The spatial matching algorithm is a complicated problem, and the current study 
diagnosed multiple issues and treatments to solve them in the development of the matching algorithm: 

• The crash coordinates may correspond to any place in the width of the street. However, the existing 

mesoscopic network configuration (Dataset 2: Network Grid) uses lines to represent roadway segments. 

o Treatment 1: Creating a road width-wide buffer around network lines. 

o Treatment 2: Snapping crashes to the road segments based on buffering. 

• At intersections or interchanges, there are some overlapping streets. 

o Treatment 3: Using road names for matching. 

• The road names may not match precisely between two sources (state road names and spellings). 

o Treatment 4: Scoring the matches. 

Researchers used these treatments and both distance and label features to systematically find and rank the most 
accurate road segments for each crash record. The algorithm finds the 10 closest roads to each crash record and 
ranks them based on their distance and label matching. Therefore, a list of potentially matching roads with their 
probability is generated for each crash event.  

Tool 2: Stochastic Crash Generation Algorithm  
The crash-generating algorithm uses the crash warning database and automates the stochastic crash scenario 
generation for the daily congestion and emissions impact assessment. The algorithm creates crash events for one 
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day using the historical crash records (Dataset 1: Crash Records) and matched roadways probability from Tool 1: 
Crash Road Matching Algorithm. The clearance duration and capacity reduction are also assessed using Dataset 5: 
Duration and Capacity Reduction of Road Closures. The matching road segment can be either selected from the 
highest probability roadways or selected randomly using the matching probability. The tool enabled researchers to 
quickly generate 50 random crash day scenarios in a short time. 

Tool 3: Potential Variable Message Sign Location Algorithm 
The developed potential VMS location finder tool uses some assured criteria to propose a set of VMS locations 
based on the current network configuration. These criteria include: 

• Located on a freeway road segment. 

• Having an immediate exit from the freeway. 

• Not overlapped by any existing VMS. 

The resulting potential VMS locations help minimize the effort to find the optimal locations in Tool 4: Optimal 
Variable Message Sign Locator. 

Tool 4: Optimal Variable Message Sign Locator 
An optimal locator tool was the third goal of the current study after data integration and stochastic emissions 
reduction calculation for crash events. The mathematical foundation and the optimization pseudocode are 
outlined as follows.  

Mathematical Formulation 
The main objective of the location optimization tool is finding the ideal location for conveying information and 
guidance to users based on the link’s potential for time and emissions reductions and at acceptable distances. In 
other words, an optimized VMS locator should find the links with the highest time and emission reductions for 
placing VMS while not focusing on a hotspot region. Placing all VMS in the same region causes information 
redundancy, meaning drivers receive the information they already receive on upstream links, leading to the waste 
of investment money. Therefore, adding a VMS at each proposed location certifies the reduction in congestion and 
emissions at downstream links and a minimized impact density for maximizing the spacings between VMS 
locations and VMS impact areas. A key assumption is that each link can only have up to one VMS. Equation 1 
shows the final solution or decision variable for the optimization problem. 

𝑋 = ( 𝑥1 ,  … ,  𝑥𝑖 ,  … ,  𝑥𝑚) Equation 1 

Where:  

𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 

𝑥𝑖 =  𝑓(𝑥) = {
1 , 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑖 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑎 𝑉𝑀𝑆

0 , 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑖 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑛𝑜 𝑉𝑀𝑆
 

Equation 2 and Equation 3 use average traffic delays and emissions results from TEMPO to compute each link’s 
monetary values and costs under crash scenarios compared to no crash scenario. High-cost links show non-
recurring congestion and emissions increase, which can be addressed by an upstream VMS. Negative cost links 
show the roadway was performing better under the crash scenario, probably due to the stochastic network 
behavior. 

𝐿𝑖𝑛𝑘 𝑗 𝑣𝑎𝑙𝑢𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑣𝑓𝑗) = 𝑑𝑐
𝑗

∗ 𝑣𝑡𝑐 + 𝑑𝑡
𝑗

∗ 𝑣𝑡𝑡 + 𝑒𝑔ℎ𝑔
𝑗

∗ 𝑣𝑔ℎ𝑔 + 𝑒𝑁𝑜𝑥
𝑗

∗ 𝑣𝑁𝑜𝑥 + 𝑒𝑃𝑀25
𝑗

∗ 𝑣𝑃𝑀25 

 Equation 2 

𝐿𝑖𝑛𝑘 𝑗 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑐𝑓𝑗) = 𝑣𝑓𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
𝑗

− 𝑣𝑓𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑗

 Equation 3 
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Where:  

𝑑𝑐
𝑗

= 𝑐𝑎𝑟 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑗, 𝑖𝑛 ℎ𝑜𝑢𝑟𝑠 

𝑑𝑡
𝑗

= 𝑡𝑟𝑢𝑐𝑘 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑗, 𝑖𝑛 ℎ𝑜𝑢𝑟𝑠 

𝑒𝑔ℎ𝑔
𝑗

= 𝑔𝑟𝑒𝑒𝑛ℎ𝑜𝑢𝑠𝑒 𝑔𝑎𝑠 (𝐺𝐻𝐺) 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑗, 𝑖𝑛 𝑔𝑟𝑎𝑚𝑠 

𝑒𝑁𝑜𝑥
𝑗

= 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑜𝑥𝑖𝑑𝑒 (𝑁𝑂𝑥) 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑗, 𝑖𝑛 𝑔𝑟𝑎𝑚𝑠 

𝑒𝑃𝑀25
𝑗

= 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟 2.5 𝑚𝑖𝑐𝑟𝑜𝑛𝑠 𝑖𝑛 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑟 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 (𝑃𝑀2.5) 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑗, 𝑖𝑛 𝑔𝑟𝑎𝑚𝑠 

𝑣𝑡𝑐 = 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑐𝑎𝑟𝑠, 𝑖𝑛 𝑑𝑜𝑙𝑙𝑎𝑟𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 

𝑣𝑡𝑡 = 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑡𝑟𝑢𝑐𝑘𝑠, 𝑖𝑛 𝑑𝑜𝑙𝑙𝑎𝑟𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 

𝑣𝑔ℎ𝑔 = 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐺𝐻𝐺 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝑖𝑛 𝑑𝑜𝑙𝑙𝑎𝑟𝑠 𝑝𝑒𝑟 𝑔𝑟𝑎𝑚 

𝑣𝑁𝑜𝑥 = 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑁𝑂𝑥 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝑖𝑛 𝑑𝑜𝑙𝑙𝑎𝑟𝑠 𝑝𝑒𝑟 𝑔𝑟𝑎𝑚 

𝑣𝑃𝑀25 = 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑃𝑀2.5 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝑖𝑛 𝑑𝑜𝑙𝑙𝑎𝑟𝑠 𝑝𝑒𝑟 𝑔𝑟𝑎𝑚 

The rerouting impact of information, provided by a VMS, will gradually decrease by distance from the VMS. That is, 
a lower number of drivers may reroute in response to a VMS or follow a VMS guidance at further downstream links 
than upstream links. The researchers refer to the rate of decreasing impact as the attenuation rate and denote it 

as 𝜌. Therefore, the current study proposed that the potential for link i to reduce the regional delay and emissions 
cost is associated with the sum of link j cost reductions multiplied by link j distance from link i for all downstream 
links within a predefined maximum distance (Equation 4). The link potential is referred to as link utility, and the 
warning system utility is the sum of all link utilities where a VMS is placed. Adding new VMSs to the system can 
improve the warning system utility. The current study investigated maximizing the utility improvement function in 
the optimal locator tool (Equation 5). 

𝐿𝑖𝑛𝑘 𝑖 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑢𝑓𝑖) =  𝑐𝑖𝑚𝑝 ∗ ∑ (𝜌𝑑𝑖
𝑗

∗  𝑐𝑓𝑗)

𝑗=𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑙𝑖𝑛𝑘𝑠

       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑𝑖
𝑗

< 𝑑𝑚𝑎𝑥 

 Equation 4 

𝑊𝑎𝑟𝑛𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑈) =  ∑ 𝑢𝑓𝑖 ∗  𝑥𝑖
𝑚
𝑖=1   Equation 5 

Where: 

𝑐𝑖𝑚𝑝 = 𝑉𝑀𝑆 𝑖𝑚𝑝𝑎𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 𝑜𝑛 𝑐𝑜𝑠𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

𝑑𝑖
𝑗

= 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑖 𝑓𝑟𝑜𝑚 𝑙𝑖𝑛𝑘 𝑗, 𝑖𝑛 𝑚𝑖𝑙𝑒𝑠 

𝜌 = 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1 

𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎 𝑉𝑀𝑆 𝑐𝑎𝑛 𝑖𝑚𝑝𝑎𝑐𝑡, 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 2 𝑎𝑛𝑑 3 𝑚𝑖𝑙𝑒𝑠 

The other objective function computed in the current study was for impact density criteria (Equation 6). The 
impact density of a link is a measure representing the cumulative impact of VMS boards on that link. If a link has a 
high impact density and receives information from a VMS source, it will not be on a priority list for installing a new 



 

6 

VMS. The impact density criteria helped the optimal locator tool to widen the search for VMS locations and not 
focus on a cost hotspot region. In other words, proposed sites should minimize the local (or link) VMS density (or 
maximize the distance from other existing VMS locations). Equation 7 shows the warning system density for 
installing a VMS on link i. 

𝐿𝑖𝑛𝑘 𝑖 𝑖𝑚𝑝𝑎𝑐𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑠𝑓𝑖) = ∑ 𝜌𝑑𝑖
𝑗

𝑗=𝑎𝑙𝑙 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 
𝑎𝑛𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑙𝑖𝑛𝑘𝑠 

𝑤𝑖𝑡ℎ 𝑎 𝑉𝑀𝑆 𝑠𝑖𝑔𝑛

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑𝑖
𝑗

< 𝑑𝑚𝑎𝑥  Equation 6 

𝑊𝑎𝑟𝑛𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐿𝑖𝑛𝑘 𝑖 (𝑆𝑖) =  𝑠𝑓𝑖 ∗  𝑥𝑖 Equation 7 

Therefore, the objective functions of the current study are shown in Equation 8. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 = {
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑈

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝑖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … , 𝑚 
 Equation 8 

The constraint of the optimization is the number of proposed VMSs in the network. The current study used all 
potential VMS locations derived from the previous tool to generate N, the number of the proposed locations for 
installing VMS boards (Equation 9). 

𝑆𝑢𝑚 𝑋 = 𝐹𝑖𝑥𝑒𝑑 = 𝑁 Equation 9 

Solution Method 
The current study used the Ԑ-constraint method for solving the multi-objective optimization problem in Equation 8 
(Haimes, 1971). In the Ԑ-constraint method, the multi-objective optimization is converted into a single-objective 
optimization by optimizing one objective function and constraining other objective functions to a user-specified Ԑ 
value. Therefore, the warning system utility from Equation 8 was set as the objective function, and the densities 
were bounded to a value in Equation 10. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑈(𝑋), 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑠𝑓𝑖 < Ԑ 𝑓𝑜𝑟 𝑖 = 1, … , 𝑚  

𝑆𝑢𝑚 𝑋 = 𝑁 Equation 10 

The Ԑ-constraint method has multiple advantages over the other multi-objective optimization solution algorithm, 
the weighting method, including application to non-convex problems and no need to scale the objective functions 
(Chankong and Haimes, 2008; Mavrotas, 2009). However, specifying the Ԑ value can be challenging. Therefore, the 
current study took an alternate approach by iterating through different Ԑ values until the solution converges.  

Algorithm Pseudocode 
The detailed algorithm is described as follows: 

1. Generate 50 sets of crash days using Tool 2: Stochastic Crash Generation Algorithm. 
2. Compute the link-by-link delay and emissions increase for each iteration using Equation 3. 
3. Average the delay and emissions increase for each link over 50 iterations. 
4. Set 𝑁, 𝑣𝑡𝑐 , 𝑣𝑡𝑡 , 𝑣𝑔ℎ𝑔, 𝑣𝑁𝑜𝑥, 𝑣𝑃𝑀25, 𝑐𝑖𝑚𝑝, 𝜌, 𝑑𝑚𝑎𝑥. 

5. Calculate 𝑐𝑓𝑗 for all link j in the network using Equation 3. 
6. Set 𝑀 as potential VMS links derived from Tool 3: Potential Variable Message Sign Location Algorithm, 

and set 𝑚 as the number of potential VMS links. 

7. For every 𝑖 in 1 to 𝑚: calculate 𝑢𝑓𝑖 using Equation 4. 

8. Sort 𝑀 in descending order based on their utility 𝑢𝑓𝑖. 
9. Set a list for Ԑ with wide ranging values. 
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10. For every Ԑ in the Ԑ list: 
a. Set i = 1. 
b. For link i in 𝑀 from step 8: 

i. If 𝑢𝑓𝑖 < 0 (meaning the crash scenario did not increase the value functions for 
downstream links): 

• 𝑥𝑖,...,𝑚 = 0. 

• Go to step 10c. 

ii. Compute 𝑠𝑓𝑖 using Equation 6. 

iii. If 𝑠𝑓𝑖 < Ԑ: 

• 𝑥𝑖 = 1. 

• 𝑁 = 𝑁 − 1. 

Else if 𝑠𝑓𝑖 >= Ԑ: 

• 𝑥𝑖 = 0. 
iv. If 𝑁 > 0: 

• i= i + 1. 

• Go to step 10b. 
Else if 𝑁 = 0: 

• 𝑥𝑖,…,𝑚 = 0. 

• Go to step 10c. 
c. Set 𝑋 = ( 𝑥1 ,  … ,  𝑥𝑖 ,  … ,  𝑥𝑚). 
d. Compute delay and emissions reductions, and utility improvement for each selected VMS link 

and the whole system using Equation 4 and Equation 5. 
e. Go to step 10a if any Ԑ remain in the Ԑ list. 
f. Stop when the set of chosen links stays the same for a sufficiently large number (e.g., 5) of Ԑ 

values.  
End: Set the stabilized 𝑋 set as the optimal set. 
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Case Study 

The research team selected the El Paso region as a case study. El Paso is located in the southwestern part of the 
Texas border region with several entry ports to Ciudad Juárez, Mexico. The high cross-border traffic activities and 
truck traffic have led to poor air quality in the region. El Paso is currently identified as a nonattainment area for 
particulate matter 10 micrometers in diameter or smaller at an annual averaging period according to the National 
Ambient Air Quality Standards. Therefore, there is a vital need to reduce traffic-related emissions and improve air 
quality.  

Crash Impacts Analysis 

The crash warning database described in the study methodology was developed for the El Paso region to integrate 
historical crash records, roadway network, travel demand, existing VMS locations, and crash clearance duration. 
Using Tool 1: Crash Road Matching Algorithm, the current study identified the matching roadway for each crash. 
Therefore, crash risk (the number of crashes per mile of road per day) averaged over five years of historical crash 
data was computed. Figure 4 shows some high crash risks on the freeway system. 

 

Figure 4. Crash risk of El Paso roadways averaged over five years. 

Next, researchers used Tool 2: Stochastic Crash Generation Algorithm and TEMPO to rapidly generate 50 random 
crash day scenarios. The delay and emissions impacts of crash scenarios are detailed in Table 3. A crash day 
increases total network delay by 5.6 percent, GHG emissions by 0.7 percent, NOx emissions by 0.6 percent, and 
PM2.5 emissions by 0.8 percent. The lower relative increase in emissions compared to the relative increase in 
network delay can be explained by the fact that the emissions rate during idle and at low speeds is lower than that 
at normal operating speeds. These increases are significant at the 95 percent confidence level, according to the 
Student t-test. The increase in delay and emissions due to crashes shows the potential for the VMS system to 
reduce crash-related delay and emissions.  

Table 3. Summary Crash Delay and Emissions Impacts 

Metric Increase Value Percent Increase P-Value 

GHG (ton) 67 0.7% 2.61E-06 

NOx (kilogram) 94 0.6% 2.11E-06 

PM2.5 (kilogram) 5 0.8% 4.53E-07 

Delay (hour) 11,260 5.6% 1.37E-06 
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Figure 5 illustrates the average delay and emissions impacts of crashes at the roadway level. The maps show that, 
even though there are minor differences in small sections of the region (e.g., the northwest side), the delays and 
different emissions species are substantially similar, indicating strong correlations among these metrics. The 
pattern similarity is further studied in terms of monetary values in the “Aggregate Warning System Utility” section. 
The road level delay and emissions impacts were integrated into Tool 4: Optimal Variable Message Sign Locator 
along with the 149 potential locations identified from Tool 3: Potential Variable Message Sign Location Algorithm. 
Researchers could use further filters to reduce the number of potential VMS locations. However, Tool 4: Optimal 
Variable Message Sign Locator was designed in a way to handle as many locations as possible. The next section 
details the optimization scenario design and results for the case study. 

 

Figure 5. Average delay and emissions impacts of crashes. 

Location Optimization of Variable Message Signs 

Scenario Design 
Intuitively, optimal VMS locations would differ depending on the values assigned to various key input variables 
outlined in Tool 4: Optimal Variable Message Sign Locator, specifically set in step 4 of the algorithm pseudocode. 
These input variables can be grouped into two categories: 

• the coefficients for the objective function, referred to as hyperparameters, and 

• the monetary values assigned to delays and emissions. 

The input variables affect the final values for total utility and the relative weight placed on time savings versus 
emissions reductions. 

To search for the optimal solution and test the sensitivity of the solution to these input variables, researchers 
designed 27 scenarios iterating over a combination of values for hyperparameters of objective function and 
monetary values. Researchers evaluated the ranking of each potential VMS location under each scenario. 
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Researchers found that the location sets are not significantly different among most scenarios. The following 
sections describe the assignment of hyperparameters of objective function and monetary values. 

Hyperparameters 
The hyperparameters in this study include the VMS impact ratio on cost reduction (𝑐𝑖𝑚𝑝), the maximum distance 

under the impact of the VMS (𝑑𝑚𝑎𝑥), and the attenuation rate parameter (𝜌). Collectively, they define the 
effectiveness level of a VMS. 

The VMS impact ratio on cost reduction (𝑐𝑖𝑚𝑝) is assumed to be the same as the VMS impact ratio on congestion 

reduction from literature. Previous studies have approximated the parameter to be 0.27–0.44 (Barfield et al., 
1989; Benson, 1996; Chatterjee et al., 2002; Madanat et al., 1995). Also, the maximum distance under the impact 
of the VMS (𝑑𝑚𝑎𝑥) was studied as the activation segment in previous studies and was estimated to be 2–2.5 miles 
(Chiu and Huynh, 2007; Fan et al., 2018; Wardman et al., 1997). Researchers designed three different effectiveness 
levels (low, medium, and high) using these two rates (Table 4). The attenuation rate parameter (𝜌) is deducted 

from the activation segment length, considering 𝜌𝑑𝑖
𝑗

≈ 0 for 𝑑𝑖
𝑗

>  𝑑𝑚𝑎𝑥. 

Table 4. Effectiveness Level Scenarios 

Effectiveness Level 𝒄𝒊𝒎𝒑 𝒅𝒎𝒂𝒙 (mile) 𝝆 

Low 0.25 1 0.05 

Medium 0.35 2 0.22 

High 0.45 3 0.37 

 

Monetary Values 
The monetary values of time and emissions in Equation 2 are divided into three categories (low, average, and high 
values) and approximated from the previous studies (Goodkind et al., 2019; Shelton et al., 2014). Table 5 and 
Table 6 list the values of each category. 

Table 5. Monetary Value of Time Scenarios 

Monetary Value of Time 𝒗𝒕𝒄 (Dollar per Hour) 𝒗𝒕𝒕 (Dollar per Hour) 

Low 5 10 

Average 15 30 

High 25 50 

 
Table 6. Monetary Value of Emissions Scenarios 

Monetary Value of 
Emissions 

𝒗𝒈𝒉𝒈 (Dollar per Gram) 𝒗𝑵𝒐𝒙 (Dollar per Gram) 𝒗𝑷𝑴𝟐𝟓 (Dollar per Gram) 

Low 10 1,000 4,000 

Average 100 10,000 100,000 

High 500 50,000 2,500,000 

 

Scenarios 
Finally, researchers designed 27 scenarios using the combinations of the following assumptions for the 
effectiveness level and monetary values, as well as the number of VMSs for installation: 

• Effectiveness level: low, medium, and high. 

• Monetary value of time: low, average, and high. 

• Monetary value of emission: low, average, and high. 
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For illustrative purposes, the number of VMSs for installation is set to 10 in this study. Later sections show that this 
number does not affect the optimal locations of VMSs. An agency can select as many or as few VMS locations as its 
budget and scope allow. 

Optimization Convergence 
Researchers iterated over various maximum density, Ԑ in Equation 10, and assessed the average delay and GHG 
emissions reduction of selected VMS locations in the scenario design (Figure 6). When the maximum density gets 
high enough (Ԑ > 3 for the low and medium effectiveness levels and Ԑ > 4 for the high effectiveness level), the 
average delay and GHG emissions reductions converge to the maximum value. Figure 6 shows a convergence point 
or the minimum value for maximum density. Also, a comparison of the charts on the right side of Figure 6 to those 
on the left side shows the monetary values of time and emissions may not change the convergence point, or the 
average delay and emissions reduction at each value of maximum density. The VMS information can impact the 
traffic activity over a wider area for the high effectiveness level, and the maximum density needs to be higher for 
substantial delay and emissions reduction. Therefore, the average delay and emissions reduction are lower in the 
high effectiveness level for low maximum densities. However, increasing the maximum density leverages some 
locations with wide impact in the high effectiveness level to overcome the previous lack of benefits.  

Therefore, the following sections consider maximum density to be equal to 3 for the low and medium 
effectiveness levels and 4 for the high effectiveness level. 

 

Figure 6. Average delay and GHG emissions reduction of selected VMS locations for various maximum densities. 

Aggregate Warning System Utility 
Researchers investigated the impact of changes in monetary values of time and emissions on the warning system 
utility under different effectiveness levels. Figure 7 illustrates the average warning system utility for different 
monetary values of time and emission, and effectiveness levels. The figure shows that the utility is positively 
correlated with values of time, values of emission, and effectiveness levels. These assumptions will affect the 
accounting of the societal return on investment if such analyses are to be carried out for VMS investments.  
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Figure 7. Impact of monetary values of time and emissions on warning system utility. 

However, the resulting congestion reduction and emissions reduction from installation of VMSs at proposed 
locations do not substantially change with the monetary values of time and emissions (Figure 8). That is, the 
monetary values only impact the warning system utility for the economic decision-making process (Figure 7). 
However, the selection of optimal VMS locations is not impacted by the monetary values of time and emission, 
which helps decision makers rely on the proposed locations as long as they have a rough estimate of the monetary 
values of time and emission.  
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Figure 8. Impact of monetary values on delay reduction and emissions reduction under different effectiveness 
levels. 

The underlying reasons for the insensitivity of average delay benefit and emissions reduction to different monetary 
levels are: 

• Emissions reductions of the downstream links are highly correlated with the delay reduction of those 

links. 

• The delay reduction is a major part of the utility function and higher in value than emissions reduction. 

Therefore, emissions benefits can be projected in the congestion reduction, and the utility function can be 
rewritten in the delay reduction. Figure 9 shows the correlation between emissions reduction and delay reduction 
of downstream links of all selected VMS links in different scenarios. The correlation between delay reduction and 
emissions reduction was also previously shown in Figure 5. 
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Figure 9. Correlation of delay reduction and emissions reduction of downstream links for 10 selected VMSs 
across 27 scenarios. 

Table 7 shows the average proportion of monetary emissions reduction to delay reduction in warning system 
utility over different scenarios. As observed, the emissions to delay ratio is mostly insignificant in warning system 
utility. When selecting high monetary values of emissions and low monetary values of time, the emissions benefits 
proportion may become more than half of the total utility. 

Table 7. Emissions Utility to Delay Utility Ratio 

Monetary Value of Emissions Monetary Value of Time 
Effectiveness Level 

Low Medium High 

Low 

Low 0.011 0.012 0.012 

Average 0.004 0.004 0.004 

High 0.002 0.002 0.002 

Average 

Low 0.117 0.122 0.124 

Average 0.039 0.041 0.041 

High 0.023 0.024 0.025 

High 

Low 0.683 0.715 0.730 

Average 0.228 0.238 0.243 

High 0.137 0.143 0.146 

 
So far, the monetary values do not significantly change the delay and emissions reductions of the selected VMS 
locations. Table 8 shows that even for different effectiveness levels, the first five optimal locations remain the 
same, and other locations slightly change. Figure 10 maps 10 optimal VMS locations among 149 proposed locations 
in the El Paso network for the medium effectiveness level. 
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Table 8. Selected VMS Link Ranks for Different Effectiveness Levels 

Link Name Effectiveness Level = Low Effectiveness Level = Medium Effectiveness Level = High 

2136-6146 1 2 5 

4023-4026 2 1 1 

1993-4028 3 3 3 

1648-1590 4 4 2 

4031-1975 5 5 4 

2140-6149 6 10 NA 

1659-1658 7 6 7 

2871-2870 8 NA NA 

6142-2140 9 9 10 

1511-2438 10 8 9 

1660-1649 NA NA 6 

1930-1929 NA 7 8 

 

 

Figure 10. Ten best VMS locations in El Paso for medium effectiveness level (blue points show new proposed 
locations; orange dots show existing VMS locations). 

Marginal Utility of Added Variable Message Signs 
Finally, adding each VMS has a different utility benefit to the whole warning system. Researchers monetized this 
value and estimated them using Equation 4 for all potential VMS links. Figure 11 illustrates the marginal utility of 
adding VMSs for different effectiveness levels, showing the marginal utility greatly drops after adding the first 
10 optimal VMSs to the network and becomes almost significantly small after adding 20 VMSs at optimal locations. 
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Figure 11. Average delay and GHG emissions reductions of selected VMS locations for different effectiveness 
levels. 
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Conclusions and Recommendations 

The current study proposed a congestion- and emission-based algorithm to select the optimal VMS locations 
within a network. The study developed an integrated database and tool framework, TEMPO-Safety, to use 
historical crash events for assessing the delay and emissions impacts of crashes. Next, the monetary values of 
these impacts and the optimal VMS locations were identified. 

Relationship between Congestion Relief and Emissions Reduction 

By studying delay and emissions simultaneously, the study revealed the relationship between congestion relief and 
emissions reduction. The congestion cost of crashes (excluding the statistical value of life and the medical expenses 
of injuries) is dominated by the lost value of time. Emissions cost constitutes up to 15 percent of total congestion 
cost, under low and average pollutant costs. Emissions changes are highly correlated with delay changes in the 
network. The relative increase in delay caused by crashes is much higher than the relative increase in emissions. 
Traffic management mechanisms such as VMSs are mostly a congestion relief measure, but their emissions 
reduction efficacy is limited. 

Societal Benefits of Optimally Placed Variable Message Signs 

The study results have demonstrated the value of ITS strategies such as VMSs. Ten optimally placed VMSs can save 
$1,000–9,000 per day depending on the value of time, value of emission, and effectiveness level. VMSs can reduce 
the delay by 200–900 hours per day, which is less than 8 percent of the crash delay increase. The GHG emissions 
may be reduced by 1–5 tons per day, which is 1–8 percent of the total GHG emissions increase caused by crashes. 
The marginal benefit of adding more VMSs decreases dramatically after 10 or so additional signs for the El Paso 
network. 

According to data from the U.S. Department of Transportation, a low estimate of the capital cost per VMS unit is 
$100,000 (U.S. Department of Transportation, 2012). Ten VMSs, as suggested in this study, would amount to 
$1 million in capital cost. Referring to the benefits range, a $5,000 per day savings would add up to $1.3 million in 
societal cost savings, considering 260 weekdays in a year. This rough estimate demonstrates the favorable return 
on investment for VMSs if they are optimally placed.  

Future Work 

This project devised an optimization method to place VMSs. This methodology can be generalized to other 
infrastructure improvement problems where decision-makers need to find an additional amount of an 
infrastructure element and place these elements among many potential locations. The project team plans to 
further validate and refine the methodology by applying it to a different network and experimenting with a similar 
but different decision-making process. 
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Outputs, Outcomes, and Impacts 

The main output of this project is the TEMPO-Safety framework, with its four tools for automating crash matching, 
crash generation, location identification, and location optimization in a network system. The tools made it possible 
to sample multiple crash days for statistical rigor and iterate over multiple input assumptions to search for the 
optimal solution set. 

With the automated process, the study demonstrated a practical solution for minimizing delay and emissions 
impacts in networks. This solution can lead to major financial and societal cost reduction through infrastructure 
decision-making. Furthermore, the optimization algorithm can be extended to other infrastructure decision-
making processes involving location selection. 

Research Outputs, Outcomes, and Impacts 

The proposed platform and case study findings were accepted for a webinar talk at the National Travel Monitoring 
Exposition and Conference 2021.Researchers are also preparing a publication draft and anticipate that the location 
optimization part will be the basis for a doctoral dissertation. 

Technology Transfer Outputs, Outcomes, and Impacts 

A dashboard has been produced to generate spatial locations for various crash metrics as well as the final VMS 
location design: https://carteehdata.org/library/webapp/crash-warning-emission-da-14b7.  

A data story and visualizations have been shared on the CARTEEH Data Hub for public access: 
https://carteehdata.org/library/dataset/crash-warning-emission-da-c3cf. The transferability of the proposed 
methodology can also be ensured through open-source codes and libraries. 

Education and Workforce Development Outputs, Outcomes, and Impacts 

The key analyst for this project is Farinoush Sharifi. She was a third-year Ph.D. student in transportation 
engineering at Texas A&M University at the time of the project and looking forward to using the findings of this 
research as support for her final dissertation. This project was also a unique opportunity for her to gain insight into 
a cross-disciplinary research area, as well as to work through a project from proposal to finish, which is not offered 
as part of the traditional curriculum. Along with completing the tasks in the research plan, she benefited from 
reviewing previous work, learning the procedure to obtain datasets, collaborating with experts, and managing a 
project. 

https://carteehdata.org/library/webapp/crash-warning-emission-da-14b7
https://carteehdata.org/library/dataset/crash-warning-emission-da-c3cf
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