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participants’ health monitoring were negatively associated with spirometry measures such as forced expiratory 

volume. Logistic regression modeling found that PM2.5 increased likelihoods of high waist circumference and high 

glucose. Also, increasing nitrogen dioxide (NO2) concentration was associated with high waist circumference for 

all exposure periods and high glucose for 72-hr exposure. The likelihood of having MetS closely correlated with 

increasing 96-hr PM2.5 and NO2, while the odds of having MetS showed associations with decreasing ozone.  

Land-use regression models were performed for modeling the spatial variation of MetS based on the significant 

transportation predictors. The street length within 500 m and vehicle miles traveled have shown to be important 

traffic predictors to find relationships with lung function. As the total length of street within zones of impact 

increases, the risks of a high waist circumference, high triglycerides, and low high-density lipoprotein cholesterol 

were observed. The inverse of the distance to the nearest port of entry was associated with increases in fasting 

glucose. The increasing likelihood of MetS was also related to the increased street length within 500 m radius zones 

to each participant’s residential address. 

The dissemination of these results can lead to decision making and improve policy related to healthy living in 

communities close to busy roadways. 
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Executive Summary 

Problem Statement 
People with lower income are more likely to live in communities with higher pollution levels from traffic-related 

emissions. Traffic-related air emissions have been reported to have strong association with urban air pollution and 

cause adverse respiratory health effects in near-road communities. Transportation parameters such as traffic 

density, vehicle miles traveled, and road length, as well as land-use data such as population density, land-use 

classification, proximity to heavy-traffic roads, distances to major point and area sources, and household income, 

are important variables for explaining a spatial variation of air quality and health outcomes. However, studies of 

long-term exposure to traffic-related pollutants with cardiovascular risk factors are less common, and findings 

remain mixed. None of these studies have been conducted in a border region while considering both 

cardiovascular and respiratory outcomes.   

Technical Objectives 
A large health study has been conducted in the El Paso, TX, region in the past five years, collecting data for 

cardiorespiratory risk from approximately 5,000 participants living in low-income communities. First-year data of 

health screenings including airway inflammation and lung function measurements were also used to examine the 

effects of short- and long-term pollution exposure on respiratory health outcomes.  

Data extraction and cleanup were performed on participants’ home addresses to extract latitude and longitude 

coordinates. Air quality and meteorological data were acquired from the Texas Commission on Environmental 

Quality’s continuous air monitoring stations including hourly air pollutant data of particulate matter (PM) 

(including PM less than 2.5 micrometers in diameter [PM2.5] and PM less than 10 micrometers in diameter [PM10]), 

nitrogen dioxide (NO2), and ozone (O3). Time-integrated air pollutant exposure data of 24-, 48-, 72-, and 96-hr 

averages were processed for each subject.  

The spatially distributed traffic-related and land-use variables were acquired from the El Paso Metropolitan 

Planning Organization, the U.S. Census Bureau, and the U.S. Geologic Survey. Two impact zones were established 

to have radii of 500 m and 1,000 m centered at each participant’s address. Data were extracted for the two zones 

based on the latitude and longitude coordinates of the participant’s residence using geographic information 

system (GIS) mapping.  

R code was developed to draw the information from short- and long-term pollution datasets and deliver an 

average value of pollutant exposure relative to a participant’s date of assessment. The land-use regression (LUR) 

technique was applied to explore the associations between a set of spatially distributed metabolic syndrome 

(MetS) risk factors collected from 5,000 low-income participants and the transportation and land-use predictors.  

Key Findings 
Researchers established the following short-term association between cardiorespiratory health outcomes (lung 

function, inflammation, and MetS risk factors) and traffic-related air pollutants (PM2.5, PM10, NO2, and O3) in 

residents of low-income communities of El Paso, TX: 

• The forced expiratory volume during one second (FEV1) was negatively correlated with average 

concentration levels of PM2.5 (24/48/96 hr).  

• Negative associations between FEV1/forced vital capacity and 96-hr PM2.5/24-hr NO2/96-hr NO2 were also 

observed. 

• MetS risk factors, such as waist circumference, high-density lipoprotein (HDL), and fast blooding glucose, 

were associated with pollutant measurements. 



 

• Waist circumference, in particular, for females is a significant factor showing strong relationships with 

PM2.5 and NO2 for all exposure periods.  

• Increasing PM2.5 and NO2 concentration was also associated with increasing likelihood of a high waist 

circumference. 

• A significant relationship between 96-hr averaged O3 and HDL was observed. 

• The increase in 24-/48-hr PM2.5 and PM10 were significantly associated with an increase in the box-cox 

transformed fasting blood glucose scale. Higher likelihood of having high glucose was associated with 

increased PM concentrations. 

• The MetS classification based on the combination of five risk factors showed significant associations with 

PM2.5, NO2, and O3. 

Researchers established the following long-term association between cardiorespiratory health outcomes (lung 

function, inflammation, and MetS risk factors) and spatial transportation data for residents of low-income 

communities of El Paso, TX: 

• The length of the street within the 500-m impact zone has shown to be an important traffic predictor for 

lung function (peak expiratory flow [PEF] and the best result interpreted by the spirometry software 

(CareFusion Spirometry PC Software™ 36-SPC1000-STK) for PEF [PEF Best].  

• The increase in pulse pressure was associated with the amount of traffic within a 500-m radius and the 

proximity to the nearest port of entry (POE).  

• The increase in the inverse of the distance squared to the POE, which implies a decrease in the distance to 

the POE, was significantly associated with an increase in fasting glucose. 

• The most significant predictor in the LUR models of MetS risk factors was the total length of the street 

within a 500-m radius.  

• The increase in the street length associated with increasing waist circumference and triglycerides and 

decreasing HDL cholesterol. 

• As the total length of the street increases, the risks of a large waist circumference, high triglycerides, and 

low HDL cholesterol were observed.  

• The increasing likelihood of MetS was also related to the increased street length within 500 m. 

Project Impacts 
Researchers found associations between cardiorespiratory outcomes and traffic-related data for both air quality 

and traffic-related activities. Aside from the participants receiving their screening results, this project provides 

relevant air quality information to the participants. Spatial variations of environmental and traffic-related data 

were informed for the defined impact zones (500 m and 1,000 m). In parallel, this project integrated health 

outcome data into a GIS map. A predicted map of MetS was produced to show the prediction of the spatial 

distribution of MetS outcome in El Paso, TX. The dissemination of results can lead to decision making and improve 

policy related to healthy living in communities close to busy roadways. The research team envisions providing 

education regarding the detrimental effects of air pollution, which can be combined with the Healthy Living and 

Traffic-Related Air Pollution initiative to improve participants’ health.  
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Background and Introduction 

Introduction 
Air pollution is caused by different pollutants in the atmosphere that can harm living organisms and the natural 

environment. The health effects of air pollution from outdoor environments are of great concern due to the high 

exposure risk even at relatively low concentrations of air pollutants (Kim et al., 2015). People living in areas with 

higher exposure to air pollution compared to those in less polluted areas were more likely to die, and stronger 

associations were found with cardiorespiratory deaths (Dockery et al., 1993; Pope et al., 1995). Several scientific 

publications have outlined how exposure to these particles is a source of various health problems including heart 

and lung disease, irregular heartbeat, aggravated asthma, decreased lung function, and increased respiratory 

symptoms (Atkinson et al., 2010; Cadelis et al., 2014; Correia et al., 2013).  

In addition, air pollution may promote the development of several cardiovascular risk factors (e.g., elevated lipids 

and blood pressure) and lead to type-2 diabetes (Bowe et al., 2018; Pope et al., 2015; Rao et al., 2015). Suggested 

mechanisms for this interaction include alteration in pathways for control of adipose tissue, the presence of 

particles in the systemic circulation, release of inflammatory mediators, and the effects on glucose metabolism 

(Rao et al., 2015; Wellen and Hotamisligil, 2003; Xu et al., 2003). In recent decades, many cardiorespiratory 

biomarkers have been identified and studied in relation to air pollution exposure (Rom et al., 2013). Even if not all 

biomarkers are in the causal pathway for development of a disease, they can be considered valuable indices of a 

change in disease risk of air pollution exposure (Thurston et al., 2017). 

Exhaled nitric oxide (eNO) is considered a biomarker of airway/lung inflammation, which is an important 

determinant of asthma and other lung diseases (Trachsel et al., 2008). eNO measurements have been adopted in 

large epidemiological studies to elucidate the negative impacts of air pollution on pulmonary inflammation in 

asthmatic children (Delfino et al., 2006; Holguin et al., 2007; Liu et al., 2009). An elevated eNO value indicates 

airway inflammation, which translates to an increase in inflammatory processes such as asthma (Holguin et al., 

2007; Steerenberg et al., 2003). Lung function measurements are assessed by considering the expiratory flow rate 

in the amount of time required for a person to exhale. Lung function is usually assessed in terms of forced vital 

capacity (FVC), forced expiratory volume in one second (FEV1), peak expiratory flow (PEF), and forced expiratory 

flow during the two interior quartiles of exhalation (FEF25-75%) (Hankinson et al., 1999).  

Metabolic syndrome (MetS) is a known precursor of cardiovascular disease, hypertension, and type-2 diabetes 

(Chen and Schwartz, 2008), and consists of a group of five risk factors: 

• Excess abdominal fat. 

• High blood pressure (BP). 

• High triglyceride (TG) levels. 

• Low high-density lipoprotein (HDL) cholesterol (called good cholesterol) levels. 

• High fasting glucose. 

Having three or more of these risk factors results in a classification of MetS, which, in itself, is a risk factor for 

cardiovascular disease, diabetes, hypertension, and dyslipidemia (abnormal lipids). The high prevalence and 

increasing number of U.S. adults (34 percent) with MetS has become a public health concern that presents a great 

challenge to health care (Mozumdar and Liguori, 2011).  

Traffic-related pollutants include particulate matter (PM) (including PM less than 2.5 micrometers in diameter 

[PM2.5] and PM less than 10 micrometers in diameter [PM10]), nitrogen dioxide (NO2), and ozone (O3). A recent 

review indicated air pollution from traffic sources is a major preventable cause of respiratory disease (Laumbach 

and Kipen, 2012). Previous studies have linked the short-term effects of traffic-related pollutants to respiratory 
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outcomes such as airway inflammation and decreased lung function (Barraza-Villarreal et al., 2008; Holguin et al., 

2007). For example, eNO is an important determinant of respiratory outcomes and disease (Trachsel et al., 2008). 

Also, lung function can be affected by exposure to air pollutants in healthy adults and those with a preexisting lung 

disease (Paulin and Hansel, 2016). Moreover, a repeated-measures study found negative associations between 

daily variations in ambient air pollution and lung function measured by spirometry (Panis et al., 2017). 

Furthermore, there is also evidence of a relationship between air pollutant and cardiovascular outcomes. Works by 

Zanobetti and Schwartz (2005, 2007) showed that yearly average concentrations of PM have been associated with 

higher hospitalization risks, congestive heart failure, and recurrent heart attack among patients with previous 

myocardial infarction. Additional studies have looked at the effects of traffic-related air pollutants with 

components related to MetS, a predictor of cardiovascular disease, which include waist circumference, BP, TG, HDL 

cholesterol, fasting glucose, and other related factors (low-density lipoproteins [LDL] cholesterol and glycated 

hemoglobin [HbA1c]) (Clementi et al., 2019). 

Short-Term Air Pollution Exposure Assessments 
Research on the short-term effects of exposure to air pollutants, such as PM, O3, and NO2, has linked them with 

cardiorespiratory mortality as well (Rückerl et al., 2011). A recent metanalysis suggested that short-term exposure 

to some air pollutants may increase the risk of hypertension (Cai et al., 2016). Some studies have used time-series 

or cross-sectional analyses to report associations between elevated air pollutant concentrations over short periods 

of time (one day or several days) and increased cardiovascular mortality and morbidity (Pope and Dockery, 2006).  

However, the precise window of exposure for some biomarkers is not clearly defined and differs by study. Chuang 

et al. (2010) applied mixed models to examine the associations between air pollutants, BP, and blood biochemistry 

markers. The exposure variables included levels of PM, NO2, and O3 on the same day (24-hr average) and 48- to 

144-hr averages before the day of the health measurements, which included systolic blood pressure (SBP), 

diastolic blood pressure (DBP), HDL cholesterol, LDL cholesterol, fasting glucose, and HbA1c (Chuang et al. 2010). 

Bell et al. (2017) estimated exposure of ambient PM2.5 based on the participant’s residential address and used 

short-term averaging periods on the day of blood draw, the day before, and a moving average of the previous five 

days with HDL cholesterol measures. One study assigned a daily exposure measure from the monitor nearest to 

the participant’s residence with available data for a given day, and constructed five exposure measures: PM2.5 

concentration the day before measurement, and average concentrations over the two, seven, 30, and 60 days 

prior to measurement using MetS as a modifying factor (Park et al., 2010).  

Also, the models used to associate air pollution exposure with cardiorespiratory outcomes vary across studies. For 

example, a study among patients with type-2 diabetes in China considered spline and multiple linear regressions to 

determine associations between short-term exposure to PM10, sulfur dioxide, NO2 with total cholesterol (TC), TG, 

LDL cholesterol, and high HDL cholesterol (Wang et al., 2018). A study in Mexican Americans used short-term 

exposure considering up to 58 days of cumulative daily averages of PM2.5 to find associations with lower insulin 

sensitivity; HDL-to-LDL ratio; and higher fasting glucose and insulin, TC, and LDL cholesterol using log 

transformations (Chen et al., 2016).  

Long-Term Air Pollution Exposure Assessments 
Over the last three decades, large cohort studies have found associations of long-term exposures to air pollutants 

with increased mortality (Dockery et al., 1993; Pope et al., 1995). Highways and roadways are major sources of air 

pollutants because of vehicle traffic, which can negatively affect surrounding communities. People with lower 

income are more likely to live in communities with higher pollution levels from traffic-related air pollution, which 

in turn can be considered an environmental justice issue (Brulle and Pellow, 2006; Cushing et al., 2015).  
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Examples of traffic-related air pollutants include PM2.5 and PM10, NO2, and O3, which pose a risk for 

cardiorespiratory diseases. Hoek et al. (2013) summarized the effect of long-term exposure to PM and NO2 on 

mortality from cardiovascular and respiratory diseases in epidemiological studies, and concluded participants with 

lower education and obesity had a larger effect estimate for mortality related to fine PM (Hoek et al., 2013). There 

is also increasing evidence of associations between increased long-term exposure to traffic-related air pollutants 

with lung function decline in children (Barone-Adesi et al., 2015) and adults (Rhee et al., 2019), as well as 

attenuation of this decline with reductions in air pollution exposure (Downs et al., 2007). Therefore, identifying 

zones of increased air pollution exposure can add knowledge to improve the environmental conditions of those 

living in at-risk areas. 

Limitations of Continuous Ambient Monitoring Stations 
Located on the U.S.-Mexico border, El Paso, TX, has 12 continuous ambient monitoring stations (CAMSs) 

monitored by the Texas Commission of Environmental Quality (TCEQ) that measure air pollutants. However, few 

are equipped to measure all the traffic-related pollutants (PM2.5, PM10, NO2, and O3), which limits the 

quantification of air pollutant concentrations at some near-road communities. While previous studies in the region 

have focused on areas surrounding major highways in the city (Raysoni et al., 2011, 2013), near-road studies for 

areas farther north of the border are scarce. Furthermore, TCEQ monitoring sites are limited in offering a deep 

inquiry of the levels of air pollution in El Paso communities. 

Other large studies have established the long-term effects of air pollution exposure with respiratory outcomes 

considering the effect of PM10, PM2.5, and NO2 on lung function using spirometry measures (Köpf et al., 2017). 

However, long-term studies that consider metabolic factors related to cardiovascular health are less common, and 

findings remain mixed. A study of Mexican Americans was unable to find long-term associations with metabolic 

outcomes such as glucose and insulin resistance using spatial interpolation from air quality monitors (Chen et al., 

2016). However, another study assessed the long-term effects of air pollution using land-use multivariable linear 

regression models to estimate the effects with glucose, insulin, HbA1c, and C-reactive protein levels (Wolf et al., 

2016). The results suggested an association between long-term exposure to air pollution and insulin resistance. 

Incorporation of Geographical Information in Models 
A review of 157 studies using various exposure methods concluded that future research would benefit from hybrid 

models combining the strengths of air pollution exposure assessments and geographic information system (GIS) 

technologies (Zou et al., 2009). Some studies have shown consistent associations between near-roadway air 

pollution and cardiorespiratory diseases using traffic density and proximity to roadways (Gan, Koehoorn, et al., 

2010; Gan, Tamburic, et al., 2010; Jiang et al., 2016; Kan et al., 2008). Furthermore, Bell et al. (2017) used a 

hierarchical spatiotemporal model considering traffic-related air pollutant seasonal trends, long-term pollutant 

averages, and land-use regression. They estimated average pollutant concentrations at each participant’s home 

location during the year of the baseline exam, as well as three months and two weeks prior to each participant’s 

baseline exam. Furthermore, geographic covariates such as distance to roadway and land-use characteristics were 

used in the universal models to improve prediction (Bell, 2017). 

However, none of these studies have been conducted in a border region while considering both cardiovascular and 

respiratory outcomes. Data modeling of traffic and air quality data associated with the cardiorespiratory factors 

would allow a better understanding of the impact of these environmental factors on cardiorespiratory health. 

Therefore, researchers used spatial traffic-related variables to explore the relationship with cardiorespiratory 

health measures collected in the community.  

Pollution Exposure and Health Outcomes in El Paso, TX 
El Paso, TX, meets National Ambient Air Quality Standards for NO2, PM2.5, and O3; the 2015 O3 standard is currently 

pending. However, El Paso’s desert setting makes attainment of PM10 standards difficult and has led to its 
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nonattainment classification. The Paso del Norte air basin is shared by El Paso, TX; Ciudad Juarez, Chihuahua; and 

Las Cruces, NM. Traffic emissions from the El Paso–Ciudad Juarez border crossings make up a sizable portion of the 

mobile vehicle emissions in El Paso.  

Previous studies have attempted to characterize the air pollution trends in the Paso del Norte air basin. Industrial 

sources, meteorological conditions, and topography were determined to cause variation in the concentration of air 

pollutants in the region (Noble et al., 2003). Li et al. (2001) characterized the temporal and spatial variations, along 

with the composition of PM. PM10 and PM2.5 were found to increase during the winter months. A study conducted 

in 2010 across four schools found that PM10 was greater in the area near I-10 and the El Paso–Ciudad Juarez border 

highway (Raysoni et al., 2011). Also, NO2 has been found to be predominate in central El Paso with lower values in 

east and west. A winter pilot study showed significant variability in NO2 concentrations across El Paso where NO2 

concentrations decreased as elevation increased (Gonzalez et al., 2005).  

A large health effect study has been under way in the El Paso region for the past five years that has involved 

collecting data for cardiorespiratory risk factors in almost 5,000 participants from low-income communities. 

Overall, the Evidence-Based Screening for Obesity, Cardiorespiratory Disease, and Environmental Exposures in 

Low-Income El Paso Households project aims to evaluate the overall health status of participants who are of 

uninsured/low-income status and to provide health vouchers for further examination for those who qualify. 

Individuals who want to participate in the study, which is available to all ages, need to be uninsured/low income 

and live within El Paso County.  

Health screenings conducted include BP, anthropometric measurements (height, weight, and waist), eNO, 

spirometry, fasting glucose, and a lipid profile (TC, TG, HDL, and LDL). The results are given and interpreted with 

participants on site. Low-income/free health clinic referrals are given to those with abnormal results. The health 

professionals who conducted the health assessments and provided the surveys throughout the study consisted of 

physicians, nurses, graduate and undergraduate students from The University of Texas at El Paso (UTEP), and 

volunteers. Prevalence rates of each factor have been reported for the first year of the study (N=657) with an 

overall prevalence of 53 percent in the selected population (Aguilera, 2016).  

Modeling of traffic and air quality data association with the MetS factors allows a better understanding of the 

impact of these environmental factors on cardio-metabolic health. This project aims to integrate air quality and 

traffic data with large epidemiological study results conducted in the El Paso, TX, region. The main research 

question is whether there is an association between the concentration levels of traffic-related air pollutants and 

cardiorespiratory-related risk factors. Air quality and meteorological data were acquired from the centralized 

TCEQ-operated CAMSs, and the spatial traffic-related variables (e.g., traffic roads, traffic counts, and distances to 

ports of entry [POE]) were acquired from the El Paso Metropolitan Planning Organization. The dissemination of 

results can lead to decision making and improve policy related to healthy living in communities close to busy 

roadways. 
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Approach 

This project integrated air quality and traffic-related data with a large epidemiological study conducted in the El 

Paso, TX, region, and established a continued partnership for future data collection efforts. The Evidence-Based 

Screening for Obesity, Cardiorespiratory Disease, and Environmental Exposures in Low-Income El Paso Households 

project is a large, ongoing study that collects data from low-income participants in El Paso, TX. A team of health 

professionals conducts a sociodemographic survey and collects health data on site at convenient locations for the 

participants. The locations include housing authority communities, faith-based organizations, food distribution 

events by local food banks, community health fairs, Mexican Consulate clinic days, and grocery stores, among 

others. Data collected include a predictor of cardiovascular risk, MetS, which includes measures of waist 

circumference, BP, TG, HDL cholesterol, and fasting glucose. During the baseline year of the study, data collected 

also included respiratory measures of airway inflammation (measured by an eNO test) and lung function 

(measured by spirometry). 

This study conducted a secondary data analysis using health data collected between 2014 and 2020 from the 

mentioned large study. The larger study protocol and the amendment for conducting this study have been 

approved by the UTEP Institutional Review Board under study numbers 590300-4 and 1249235-3 with a separate 

Institutional Review Board review for the secondary analysis under study number 1611345-1 

Respiratory Health Measures 
The study included measures for height, weight (to calculate body mass index [BMI]), waist circumference, BP, a 

lipid profile (TG, TC, HDL, and LDL), and fasting glucose. These measures were used to determine the rate of MetS 

of the participants. Also, a subset of participants were measured for airway inflammation using a NIOX device to 

determine eNO and lung function measured by spirometry (FVC, FEV1, and PEF). Participants included in the study 

were residents living within El Paso County recruited in low-income communities.  

Air pollutants that were continuously measured throughout the study in an outdoor environment included 

measurements for PM10, PM2.5, NO2, and O3. The data were extracted using publicly available datasets from CAMSs 

maintained by TCEQ. Each participant was assigned to the most representative CAMS based on residential address 

(Figure 1). Short-term exposures considered the one-hour average concentration over 24, 48, 72, and 96 hours 

before the date of examination for each air pollutant.  

Traffic-Related Measures 
El Paso, TX, is located in the southwest area of the state and borders with Ciudad Juarez, Mexico, to the south and 

Sunland Park, NM, to the west. For this study, researchers considered data from the participant’s home address to 

extract latitude and longitude coordinates and create a layer using GIS software (Figure 2).  
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Figure 1. Location of CAMSs in El Paso, TX, for selected air pollutants. 

 

Figure 2. Residential addresses of low-income participants from El Paso, TX. 
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Researchers used mapping tools (ArcGIS Pro 2.5) to calculate the distance to the nearest major arterial traffic road 

using a GIS layer developed by the Department of Civil Engineering at UTEP in collaboration with the City of El 

Paso, TX (available at the PdnMapa website, http://gis.elpasotexas.gov/pdnmapajs/) (Figure 3). 

 

Figure 3. Major arterial roads layer. 

Given its border with Mexico, El Paso has three international bridges, which constitute ports of vehicle and 

pedestrian entry into the United States. Due to the amount of daily traffic and car idling that occur at these points 

of entry, researchers considered the distance from the participants’ home address to the nearest international POE 

as a layer of interest to explore the association of traffic-related air pollution with cardiorespiratory health 

outcomes (Figure 4). 

 

Figure 4. Ports of entry in El Paso, TX. 

http://gis.elpasotexas.gov/pdnmapajs/


 

8 

To explore the effects of vehicle traffic using GIS tools, researchers defined zones of impact (500 m and 1,000 m) 

relative to a participant’s residential address. Researchers used a GIS layer developed by the El Paso Metropolitan 

Planning Organization that included traffic counts from the city’s major and minor roads address (Figure 5). This 

layer allowed calculation of the sum of the yearly vehicles miles traveled (VMT) relative to a participant’s 

residential address. 

 

Figure 5. Metropolitan planning organization traffic layer and zoomed version. 

Lastly, researchers used a GIS layer available at the Census.gov website that includes all available streets and roads 

within El Paso County. This layer allowed summarization of the length of roads within 500-m and 1,000-m zones 

for every participant relative to their residential address (Figure 6). Land-use regression (LUR) was used to explore 

associations between the mentioned traffic-related variables with the cardiorespiratory outcomes measured for 

each participant as part of the larger epidemiological study. 

 

Figure 6. Census.gov street layer and zoomed version. 

The analysis established associations between cardiovascular outcome measures using linear models for 

continuous variables (BMI, waist circumference, BP, TG, HDL cholesterol, and glucose) and logistic models for 

categorical outcomes (MetS) with spatial transportation data while controlling for known sociodemographic 

factors. 

Researchers also used a subset of participants who had respiratory health outcomes (only available for the first 

year of the larger study) to establish associations between respiratory health outcome measures using hierarchical 

models for continuous variables (eNO, FVC, FEV1, and PEF) with spatial transportation data while controlling for 

known sociodemographic factors. Furthermore, researchers considered the distribution of the participants that 

were classified with MetS using the traffic-related variables to determine the geographical areas of higher 

probability of this diagnosis/classification.  
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Methodology 

GIS Mapping  
The use of GIS mapping allowed generation of traffic-related data for every participant as a proxy for traffic-related 

air pollution exposure. Figure 7 illustrates a subset of distances to the nearest major arterial traffic road relative to 

participants’ GIS coordinates. In a similar way, researchers determined distances to the nearest international POE 

for each participant. 

 

Figure 7. Distance to the nearest major arterial (majart) road and majart layer zoom. 

The use of impact zones within 500 m and 1,000 m of each participant’s residential address was a key component 

of the analysis. Researchers used these zones to determine the length of the streets and the amount of VMT by 

using GIS layers from Census.gov and the El Paso Metropolitan Planning Organization, respectively. Figure 8 and 

Figure 9 illustrate the calculation of the VMT and the length of the streets within the 500-m impact zone. In a 

similar way, the variables within a 1,000-m zone were calculated. 

 

Figure 8. Summary of street length within 500 m using the Census.gov layer. 
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Figure 9. Summary of street length within 500 m using the metropolitan planning organization layer. 

Statistical Methods 
The continuous variables in this study include waist circumference, SBP, DBP, TG, HDL cholesterol, and fasting 

blood glucose (FBG). Also, eNO, FVC, FEV1, and PEF were collected as a subset for those who were measured 

during the first year of the study (2014–2015). 

For further statistical analysis, waist circumference, SBP, DBP, TG, HDL cholesterol, and FBG were coded as binary 

variables (yes and no) to determine whether a participant has a risk factor for MetS. The recoded variables 

followed the diagnostic criteria defined by the National Institutes of Health, and the categorical variable 

“Metabolic Syndrome (MetS)” was constructed by computing the presence of three or more of the previously 

mentioned risk factors.  

Initially, summary statistics of subject demographic information and characteristics were calculated. Correlation 

analyses using Pearson correlation were conducted to explore relationships between outcome variables and 

outdoor pollutant concentrations. The associations between pollutant metrics and various health outcomes were 

analyzed using a linear regression model. Before the correlation and regression analyses, box-cox transformation 

was applied to the variables to account for the skewness in the distribution, and different power exponents were 

selected to transform the data. For example, researchers used the log-transformation for the eNO and percent 

predicted FVC and the exponent of −0.1 for the percent predicted FEV1 values. The square root transformation was 

applied to the percent predicted PEF to improve the distribution of the right-skewed PEF data. The power 

coefficient of −2 was used to transform the glucose value.  

Logistic regression analyses were used to examine the relationship between categorical variables for a specified 

outcome (presence or absence of MetS risk factors and MetS classification) and concentration levels of pollutant 

variables. Regression models were conducted separately for each pollutant of interest.  

To examine the effects of long-term traffic-related pollutions exposures, regression models were conducted 

separately for each independent variable. Linear regression considered the respiratory and cardiovascular 

outcomes. Logistic regression analyses were also used to examine the relationship between categorical variables 

for a specified outcome (the presence or absence of cardiovascular risk factors and MetS classification) and traffic-

related measurements. Researchers applied the LUR technique to explore the associations between a set of 

spatially distributed respiratory factors from 600 participants and MetS risk factors from 5,000 low-income 

participants with the traffic and land-use predictors. The level of statistical significance was set at a p-value of 

<0.05 for all tests. The statistical software R (version 3.6.2) was used to perform the statistical analysis portion of 

the study. 
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Results  

Short-Term Effects of Traffic-Related Air Pollution on Cardiorespiratory Outcomes 

Demographics 
Table 1 summarizes subject demographic information and health characteristics. A total of 662 subjects 

participated in the study from September 2014 to May 2015. Most of the participants were female (84.4 percent) 

and Hispanic (98.2 percent), and subjects have a mean age of 47.8 years with a range of 6–89 years of age (see also 

Table 2). BMI was an average of 30.56, which ranges from 12.66 to 67.65; 81.1 percent of participants were 

overweight (35.2 percent) or obese (45.9 percent), and 100 participants (15.1 percent) were normal.  

Table 1. Demographic Information for Subjects (N=662) 

Characteristic Frequency Percent 

Sex Female 559 84.4 

Male 103 15.6 

Education Middle school 162 24.5 

Elementary school 148 22.4 

High school, no diploma 130 19.6 

High school graduate 86 13.0 

Some college, not completed 54 8.2 

Associate degree 26 3.9 

Bachelor’s degree 23 3.5 

Never attended or kindergarten only 14 2.1 

Masters, doctoral, or professional degree 2 0.3 

Not applicable (NA) 17 2.6 

Language Spanish 506 76.4 

Both 126 19.0 

English 21 3.2 

NA 9 1.4 

Employed Homemaker 211 31.9 

Employed part time 146 22.1 

Employed full time 81 12.2 

Not employed for more than 1 year 56 8.5 

Not employed for less than 1 year 51 7.7 

Self-employed 32 4.8 

Student 28 4.2 

Retired 24 3.6 

Unable to work 18 2.7 

NA 15 2.3 

Income $0–$19,999 559 84.4 

$20,000–$29,999 50 7.6 

$30,000–$39,999 9 1.4 

$40,000–$49,999 3 0.5 

$50,000–$69,999 2 0.3 

$70,000–$99,999 2 0.3 

NA 37 5.6 
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Characteristic Frequency Percent 

Marital status  Married 232 35.0 

Never married 136 20.5 

Separated 105 15.9 

Divorced 88 13.3 

Widowed 50 7.6 

A member of an unmarried couple 28 4.2 

Civil union 14 2.1 

NA 9 1.4 

Ethnicity 
  
  

Hispanic 650 98.2 

Non-Hispanic 8 1.2 

NA 4 0.6 

Race 
  
  
  
  

White 600 90.6 

Black or African American 10 1.5 

American Indian or Alaska Native 3 0.5 

Asian 2 0.3 

NA 47 7.1 

Health  Good 253 38.2 

Fair 236 35.6 

Poor 79 11.9 

Very good 50 7.6 

Excellent 21 3.2 

NA 23 3.5 

Obesity 
  

Obese 304 45.9 

Overweight 233 35.2 

Healthy 100 15.1 

NA 25 3.8 

Table 2. Summary Statistics of Participant Characteristics (N=662) 

Characteristic Min. Q1 Median Mean Q3 Max. SD IQR 

Age (years) 6 40 49 47.8 57 89 13.8 17 

Weight (kg) 18.1 66.0 76.0 77.4 87.0 164.0 17.9 21.0 

Height (cm) 115.0 154.0 158.0 159.0 163.5 185.0 8.2 9.5 

BMI (kg/m2) 12.7 26.5 29.7 30.6 34.6 67.7 6.6 8.0 

Note: Q1 means quartile 1, Q3 means quartile 3, SD mean standard deviation, and IQR 

means interquartile range. 

Air Pollution Measurements 
Hourly concentrations at the nearest CAMS to the subject’s residential address (Table 3) were averaged over 24-, 

48-, 72-, and 96-hr exposure windows for comparisons. The Chamizal station had the highest frequency as the 

nearest CAMS relative to subjects’ residential address. Other stations were also available for O3 measurements 

with valid data during the study period. The averages were aggregated to represent prior pollutant exposure until 

10 a.m. during the day when health outcomes were measured. Table 4 summarizes the descriptive statistics for 

the pollutant measurements for study subjects. Figure 10 shows the boxplots of each pollutant measurement.  
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Table 3. Spatial Distribution of Subjects to the Nearest CAMS (N=662) 

Pollutant 
Nearest 
CAMS 

Frequency Percent 

PM2.5 Chamizal 298 45.0 

Ascarate 136 20.5 

UTEP 121 18.3 

Socorro 107 16.2 

PM10 Chamizal 391 59.1 

Socorro 147 22.2 

UTEP 124 18.7 

NO2 Chamizal 296 44.7 

Ascarate 242 36.6 

UTEP 124 18.7 

O3 Chamizal 194 29.3 

UTEP 115 17.4 

Skyline 111 16.8 

Ascarate 87 13.1 

Socorro 82 12.4 

Ivanhoe 73 11.0 

Table 4. Summary Statistics for Pollutant Measurements over Various Window Exposures (N=662) 

Metric Window Min. Q1 Median Mean Q3 Max. SD IQR NA 

PM2.5 (μg/m3) 24 hr 1.737 4.962 7.771 8.932 11.063 30.854 5.555 6.101 4 

48 hr 2.819 5.382 7.849 8.642 9.745 27.292 4.880 4.362 2 

72 hr 3.172 5.859 7.949 8.589 9.497 24.097 4.017 3.637 0 

96 hr 3.174 6.003 7.844 8.435 10.003 20.083 3.380 3.999 0 

PM10 (μg/m3) 24 hr 7.268 15.982 24.854 31.820 35.239 101.979 24.156 19.257 7 

48 hr 6.224 17.052 24.374 31.259 37.896 84.665 19.996 20.844 2 

72 hr 9.218 17.040 24.990 30.128 38.962 71.958 15.998 21.922 0 

96 hr 8.185 18.740 25.632 29.376 39.440 64.953 13.571 20.700 0 

NO2 (ppb) 24 hr 0.690 8.788 12.702 14.954 21.435 33.960 8.177 12.646 7 

48 hr 2.420 9.102 12.981 14.580 19.497 31.141 7.037 10.395 7 

72 hr 3.228 10.220 14.088 14.700 18.009 29.650 6.025 7.789 7 

96 hr 5.029 10.994 13.779 14.751 18.793 29.650 5.243 7.798 7 

O3 (ppb) 24 hr 6.250 16.536 24.150 25.159 33.103 51.682 10.747 16.568 0 

48 hr 7.908 17.196 25.261 25.389 31.825 46.996 9.755 14.629 0 

72 hr 8.878 17.493 24.724 25.096 32.395 48.618 9.474 14.902 0 

96 hr 9.619 17.011 24.451 25.176 32.654 47.381 9.270 15.643 0 
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Figure 10. Summary boxplots of air pollution concentrations. 

Respiratory Associations 
Table 5 summarizes descriptive statistics for eNO and spirometry measurements. The range for eNO was from 4.9 

to 113 ppb with a mean average of 21.37 ppb. The FEV1 ranged from 0.76 to 4.86 L with an average of 2.4 L, the 

FVC ranged from 0.82 to 6 L with an average of 2.65 L, and the PEF ranged from 1.59 to 11.48 L/minute with an 

average of 5.29 L/minute. 

Table 5. Descriptive Statistics for eNO, FEV1, FVC, and PEF Metrics (N=662) 

Metric Min. Q1 Median Mean Q3 Max. SD IQR NA 

eNO (ppb) 4.900 13.000 18.000 21.369 24.000 113.000 14.006 11.000 121 

FEV1 (L) 0.755 2.005 2.340 2.399 2.747 4.863 0.623 0.742 163 

FVC (L) 0.820 2.179 2.553 2.646 3.023 6.020 0.732 0.844 163 

PEF (L/min) 1.590 4.181 5.128 5.290 6.230 11.477 1.688 2.049 163 

FEV1 %Pred 18.00 83.000 92.000 95.872 101.000 360.000 30.532 18.000 163 

FVC %Pred 16.000 73.000 82.000 84.645 91.000 266.000 24.289 18.000 163 

PEF %Pred 14.000 80.500 95.000 95.786 109.500 267.000 26.984 29.000 163 

FEV1/FVC 0.570 0.880 0.920 0.914 0.970 1.000 0.070 0.090 163 

FEV0.5Best (L) 0.290 1.720 1.940 1.993 2.260 3.940 0.502 0.540 163 

FEV1Best (L) 0.420 2.130 2.440 2.509 2.820 5.060 0.640 0.690 163 

FVCBest (L) 0.450 2.285 2.680 2.768 3.185 6.020 0.770 0.900 163 

PEFBest (L/min) 0.800 5.070 6.050 6.107 7.075 12.230 1.732 2.005 163 
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Table 6 presents pollutant effect estimates on respiratory outcomes using linear regression models and 

corresponding p-values. Regression analysis showed that short-term pollutant concentrations of PM2.5 were 

negatively associated with spirometry measures such as FEV1: β1 = −0.011 for 24-hr PM2.5 (p-value = 0.038), β1 = 

−0.014 for 48-hr PM2.5 (p-value = 0.018), and β1 = −0.017 for 96-hr PM2.5 (p-value = 0.032). FEV1Best value showed 

similar associations with 24- and 48-hr PM2.5_z β1 = −0.011 for 24-hr PM2.5 (p-value = 0.043), and β1 = −0.013 for 

48-hr PM2.5 (p-value = 0.034). Negative PM2.5-FEV0.5Best associations were also significant for the 24-, 48-, and 

96-hr window exposure (p-values < 0.05).  

The PEF was also negatively correlated with PM2.5 for all time exposure periods: β1 = −0.048 for 24-hr PM2.5, β1 = 

−0.058 for 48-hr PM2.5, β1 = −0.054 for 72-hr PM2.5, and β1 = −0.068 for 96-hr PM2.5; p-values < 0.01. Researchers 

found that the relatively longer the participants were exposed to PM2.5 concentrations, the more lung function 

decreased, represented by PEF. The 24-, 48-, and 96-hr averaged NO2 had negative association with PEF: β1 = 

−0.023 for 24-hr NO2 (p-value = 0.013), β1 = −0.028 for 48-hr NO2 (p-value = 0.011), and β1 = −0.028 for 96-hr NO2 

(p-value = 0.047). Only 48-hr PM10 particle showed relevance to the PEF Best value with β1 = −0.008 (p-value = 

0.043). The log-transformed eNO, FVC, percent predicted values in FEV1, FVC, and PEF did not show any significant 

relationship with pollutant measurements. 

The negative relationships were also found between FEV1/FVC and pollutant measurements. Using generalized 

linear regression modeling, researchers observed a negative association between FEV1/FVC and 96-hr PM2.5 (β1 = 

−0.023, p-value = 0.040). The ratio was also negatively associated with 24-hr NO2 (β1 = −0.011, p-value = 0.020) and 

96-hr NO2 (β1 = −0.019, p-value = 0.011). However, 24-hr O3 data showed a positive correlation with the sFEV1/FVC 

value (β1 = 0.008, p-value = 0.040). 

Table 6. Association between Respiratory Outcome and Pollutant Metrics (N=662) 

Respiratory Outcome Pollutant Window Estimate Std. Error t value p-value 

log(eNO) PM2.5 24 hr −0.003 0.004 −0.678 0.498 

48 hr −0.002 0.005 −0.382 0.702 

72 hr −0.001 0.006 −0.216 0.829 

96 hr 0.001 0.007 0.159 0.873 

PM10 24 hr 0.000 0.001 −0.100 0.920 

48 hr 0.001 0.001 0.485 0.628 

72 hr 0.001 0.001 0.920 0.358 

96 hr 0.002 0.002 1.165 0.244 

NO2 24 hr −0.005 0.003 −1.693 0.091 

48 hr −0.003 0.003 −0.879 0.380 

72 hr −0.002 0.004 −0.502 0.616 

96 hr −0.001 0.004 −0.339 0.735 

O3 24 hr 0.002 0.002 0.937 0.349 

48 hr 0.001 0.002 0.294 0.769 

72 hr 0.000 0.002 0.031 0.975 

96 hr 0.000 0.002 0.021 0.983 
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Respiratory Outcome Pollutant Window Estimate Std. Error t value p-value 

FEV1 PM2.5 24 hr −0.011 0.005 −2.080 0.038* 

48 hr −0.014 0.006 −2.381 0.018* 

72 hr −0.012 0.007 −1.725 0.085 

96 hr −0.017 0.008 −2.148 0.032* 

PM10 24 hr −0.001 0.001 −1.205 0.229 

48 hr −0.001 0.001 −1.047 0.295 

72 hr −0.001 0.002 −0.743 0.458 

96 hr −0.002 0.002 −1.088 0.277 

NO2 24 hr −0.002 0.003 −0.551 0.582 

48 hr −0.006 0.004 −1.577 0.115 

72 hr −0.006 0.005 −1.190 0.235 

96 hr −0.009 0.005 −1.758 0.079 

O3 24 hr 0.000 0.003 0.101 0.920 

48 hr 0.002 0.003 0.863 0.389 

72 hr 0.001 0.003 0.293 0.770 

96 hr 0.001 0.003 0.449 0.654 

FVC PM2.5 24 hr −0.010 0.006 −1.594 0.111 

48 hr −0.013 0.007 −1.860 0.064 

72 hr −0.008 0.008 −0.969 0.333 

96 hr −0.011 0.010 −1.147 0.252 

PM10 24 hr −0.002 0.001 −1.150 0.251 

48 hr −0.001 0.002 −0.693 0.489 

72 hr −0.001 0.002 −0.261 0.794 

96 hr −0.001 0.002 −0.366 0.715 

NO2 24 hr 0.001 0.004 0.364 0.716 

48 hr −0.005 0.005 −1.017 0.310 

72 hr −0.003 0.006 −0.454 0.650 

96 hr −0.005 0.006 −0.788 0.431 

O3 24 hr −0.002 0.003 −0.642 0.521 

48 hr 0.001 0.003 0.251 0.802 

72 hr −0.001 0.003 −0.325 0.746 

96 hr −0.001 0.003 −0.236 0.813 

PEF PM2.5 24 hr −0.048 0.015 −3.289 0.001* 

48 hr −0.058 0.016 −3.555 0.000* 

72 hr −0.054 0.019 −2.883 0.004* 

96 hr −0.068 0.022 −3.120 0.002* 

PM10 24 hr −0.005 0.003 −1.509 0.132 

48 hr −0.007 0.004 −1.964 0.050 

72 hr −0.007 0.005 −1.522 0.129 

96 hr −0.009 0.005 −1.637 0.102 

NO2 24 hr −0.023 0.009 −2.496 0.013* 

48 hr −0.028 0.011 −2.561 0.011* 

72 hr −0.023 0.013 −1.787 0.075 

96 hr −0.028 0.014 −1.987 0.047* 

O3 24 hr 0.007 0.007 0.961 0.337 

48 hr 0.009 0.008 1.148 0.251 

72 hr 0.004 0.008 0.475 0.635 

96 hr 0.004 0.008 0.534 0.593 
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Respiratory Outcome Pollutant Window Estimate Std. Error t value p-value 

Transformed 
FEV1 %Pred 

PM2.5 24 hr 0.000 0.001 −0.072 0.943 

48 hr 0.000 0.002 −0.081 0.935 

72 hr 0.001 0.002 0.519 0.604 

96 hr 0.001 0.002 0.248 0.804 

PM10 24 hr 0.000 0.000 0.705 0.481 

48 hr 0.000 0.000 0.129 0.897 

72 hr 0.000 0.000 0.283 0.778 

96 hr 0.000 0.001 0.262 0.794 

NO2 24 hr 0.000 0.001 0.099 0.922 

48 hr 0.000 0.001 0.451 0.652 

72 hr 0.000 0.001 0.374 0.708 

96 hr 0.000 0.001 0.029 0.977 

O3 24 hr −0.001 0.001 −1.415 0.158 

48 hr −0.001 0.001 −1.564 0.118 

72 hr −0.001 0.001 −1.630 0.104 

96 hr −0.001 0.001 −1.462 0.144 

Transformed 
FVC %Pred 

PM2.5 24 hr 0.000 0.002 0.216 0.829 

48 hr 0.000 0.002 0.179 0.858 

72 hr 0.003 0.003 0.953 0.341 

96 hr 0.002 0.003 0.722 0.470 

PM10 24 hr 0.000 0.000 0.355 0.723 

48 hr 0.000 0.001 0.269 0.788 

72 hr 0.000 0.001 0.547 0.585 

96 hr 0.000 0.001 0.525 0.600 

NO2 24 hr 0.001 0.001 1.078 0.281 

48 hr 0.001 0.002 0.800 0.424 

72 hr 0.002 0.002 0.917 0.360 

96 hr 0.001 0.002 0.669 0.504 

O3 24 hr −0.002 0.001 −1.861 0.063 

48 hr −0.002 0.001 −1.619 0.106 

72 hr −0.002 0.001 −1.704 0.089 

96 hr −0.002 0.001 −1.569 0.117 

Transformed 
PEF %Pred 

PM2.5 24 hr −0.357 0.237 −1.508 0.132 

48 hr −0.444 0.262 −1.694 0.091 

72 hr −0.354 0.304 −1.167 0.244 

96 hr −0.522 0.350 −1.491 0.136 

PM10 24 hr −0.001 0.049 −0.011 0.991 

48 hr −0.054 0.059 −0.911 0.363 

72 hr −0.054 0.073 −0.744 0.457 

96 hr −0.068 0.086 −0.799 0.424 

NO2 24 hr −0.214 0.147 −1.453 0.147 

48 hr −0.124 0.176 −0.706 0.480 

72 hr −0.095 0.204 −0.468 0.640 

96 hr −0.106 0.225 −0.469 0.639 

O3 24 hr −0.014 0.111 −0.124 0.901 

48 hr −0.073 0.124 −0.589 0.556 

72 hr −0.101 0.127 −0.797 0.426 

96 hr −0.101 0.128 −0.791 0.429 
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Respiratory Outcome Pollutant Window Estimate Std. Error t value p-value 

FEV1/FVC PM2.5 24 hr −0.006 0.008 −0.765 0.445 

48 hr −0.007 0.009 −0.877 0.381 

72 hr −0.015 0.010 −1.563 0.119 

96 hr −0.023 0.011 −2.062 0.040* 

PM10 24 hr 0.002 0.002 1.148 0.251 

48 hr 0.000 0.002 0.056 0.955 

72 hr −0.001 0.002 −0.379 0.705 

96 hr −0.002 0.003 −0.837 0.403 

NO2 24 hr −0.011 0.005 −2.342 0.020* 

48 hr −0.007 0.006 −1.170 0.243 

72 hr −0.013 0.007 −1.963 0.050 

96 hr −0.019 0.007 −2.540 0.011* 

O3 24 hr 0.008 0.004 2.057 0.040* 

48 hr 0.005 0.004 1.242 0.215 

72 hr 0.006 0.004 1.338 0.182 

96 hr 0.006 0.004 1.453 0.147 

FEV0.5 Best PM2.5 24 hr −0.009 0.004 −2.126 0.034* 

48 hr −0.012 0.005 −2.400 0.017* 

72 hr −0.010 0.006 −1.811 0.071 

96 hr −0.014 0.006 −2.114 0.035* 

PM10 24 hr −0.001 0.001 −1.003 0.316 

48 hr −0.001 0.001 −1.113 0.266 

72 hr −0.001 0.001 −0.829 0.407 

96 hr −0.002 0.002 −0.982 0.327 

NO2 24 hr −0.003 0.003 −1.004 0.316 

48 hr −0.006 0.003 −1.813 0.070 

72 hr −0.005 0.004 −1.402 0.161 

96 hr −0.007 0.004 −1.790 0.074 

O3 24 hr 0.000 0.002 0.207 0.836 

48 hr 0.002 0.002 0.877 0.381 

72 hr 0.001 0.002 0.404 0.687 

96 hr 0.001 0.002 0.488 0.626 

FEV1 Best PM2.5 24 hr −0.011 0.006 −2.027 0.043* 

48 hr −0.013 0.006 −2.123 0.034* 

72 hr −0.011 0.007 −1.521 0.129 

96 hr −0.015 0.008 −1.774 0.077 

PM10 24 hr −0.001 0.001 −1.254 0.210 

48 hr −0.002 0.001 −1.082 0.280 

72 hr −0.001 0.002 −0.806 0.421 

96 hr −0.002 0.002 −0.962 0.336 

NO2 24 hr −0.002 0.004 −0.526 0.599 

48 hr −0.006 0.004 −1.442 0.150 

72 hr −0.005 0.005 −1.079 0.281 

96 hr −0.008 0.005 −1.564 0.118 

O3 24 hr 0.000 0.003 0.106 0.915 

48 hr 0.003 0.003 0.852 0.395 

72 hr 0.001 0.003 0.462 0.644 

96 hr 0.002 0.003 0.613 0.540 
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Respiratory Outcome Pollutant Window Estimate Std. Error t value p-value 

FVC Best PM2.5 24 hr −0.012 0.007 −1.755 0.080 

48 hr −0.014 0.007 −1.858 0.064 

72 hr −0.009 0.009 −1.046 0.296 

96 hr −0.011 0.010 −1.077 0.282 

PM10 24 hr −0.002 0.001 −1.497 0.135 

48 hr −0.002 0.002 −1.019 0.309 

72 hr −0.001 0.002 −0.599 0.550 

96 hr −0.001 0.002 −0.568 0.570 

NO2 24 hr 0.001 0.004 0.240 0.811 

48 hr −0.005 0.005 −1.061 0.289 

72 hr −0.003 0.006 −0.460 0.646 

96 hr −0.004 0.006 −0.692 0.489 

O3 24 hr −0.002 0.003 −0.560 0.576 

48 hr 0.001 0.004 0.390 0.696 

72 hr 0.000 0.004 −0.019 0.985 

96 hr 0.000 0.004 0.078 0.938 

PEF Best PM2.5 24 hr −0.048 0.015 −3.154 0.002* 

48 hr −0.055 0.017 −3.317 0.001* 

72 hr −0.050 0.019 −2.583 0.010* 

96 hr −0.062 0.022 −2.752 0.006* 

PM10 24 hr −0.005 0.003 −1.614 0.107 

48 hr −0.008 0.004 −2.026 0.043* 

72 hr −0.008 0.005 −1.623 0.105 

96 hr −0.009 0.005 −1.562 0.119 

NO2 24 hr −0.020 0.009 −2.104 0.036* 

48 hr −0.024 0.011 −2.169 0.031* 

72 hr −0.018 0.013 −1.372 0.171 

96 hr −0.021 0.014 −1.434 0.152 

O3 24 hr 0.005 0.007 0.658 0.511 

48 hr 0.007 0.008 0.844 0.399 

72 hr 0.002 0.008 0.227 0.821 

96 hr 0.002 0.008 0.212 0.832 

*All significant pollutant time exposures and corresponding p-values are expressed in bold. 

Cardiovascular Associations 
Table 7 presents descriptive statistics for cardiovascular measurements. The mean average for BMI was 30.56 and 

for waist circumference was 95.45 cm. Waist circumference ranged from 49 to 151 cm with an average of 95 cm. 

Blood pressure (SBP/DBP) measurements ranged from 74/35 to 211/128 with an average of 127/76 mmHg. TG 

levels ranged from 45 to 650 mg/dL with an average of 186 mg/dL. HDL cholesterol ranged from 15 to 100 mg/dL 

with an average of 49 mg/dL. Glucose levels ranged from 50 to 477 mg/dL with an average of 109 mg/dL. Other 

variables of interest of cardiovascular risk that are not components of MetS but could potentially offer more 

information related to cardiovascular risk included BMI, pulse blood pressure (PBP), TC, and LDL cholesterol. The 

lipid profile measures indicated an average total cholesterol of 190 mg/dL and a fasting glucose average of 

108.7 mg/dL.  
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Table 7. Descriptive Statistics for MetS Risk Factors (N=662) 

Risk Factor Min. Q1 Median Mean Q3 Max. SD IQR NA 

BMI (kg/m2) 12.660 26.520 29.690 30.560 34.560 67.650 6.580 8.040 11 

Waist 49.000 86.000 94.000 95.456 104.000 151.000 14.414 18.000 7 

SBP (mmHg) 74.000 113.000 125.000 127.772 140.250 211.000 20.626 27.250 22 

DBP (mmHg) 35.000 69.000 75.000 76.178 82.000 128.000 11.409 13.000 22 

PBP (mmHg) 6.000 42.000 49.000 51.594 59.000 107.000 14.476 17.000 22 

TC (mg/dL) 99.900 161.000 187.500 189.952 215.000 350.000 38.774 54.000 8 

TG (mg/dL) 44.900 107.250 161.000 186.043 224.000 650.100 114.664 116.750 8 

HDL (mg/dL) 14.900 40.000 48.000 49.714 58.000 100.100 14.583 18.000 18 

LDL (mg/dL) 12.000 84.000 102.000 106.088 127.000 220.000 31.896 43.000 63 

TC/HDL 1.400 3.100 3.800 4.169 4.800 22.000 1.709 1.700 31 

FBG (mg/dL) 49.900 86.250 94.500 108.682 108.000 477.000 46.478 21.750 8 

Correlation and regression analyses showed that the continuous types of MetS risk factors, such as waist 

circumference, HDL, and fast blooding glucose, were associated with pollutant measurements. Table 8 and Table 9 

show detailed results of the correlation and regression analyses, respectively. Waist circumference, in particular 

for females, is a significant factor showing strong relationships with most of the pollutants: positive correlation 

with PM2.5 and NO2 for all exposure periods (p-values < 0.005), and negative correlation with all O3 measurement 

(p-values < 0.050). The relationship between waist circumference and PM2.5 may be due to a strong correlation 

observed between BMI and waist circumference with a high correlation coefficient of 0.856 (0.870 for females and 

0.893 for males). The 72-hr PM2.5 concentration was found to be positively associated with BMI (β1 = 0.132, p-value 

= 0.042).  

A significant relationship was found between 96-hr averaged O3 and HDL, showing positive correlation with β1 = 

0.136 (p-value = 0.028). The increase in 24- and 48-hr PM2.5 and PM10 were significantly associated with an 

increase in the box-cox transformed FBG scale (p-values < 0.05) but not for the original scale of FBG. The 

transformation of FBG was suitable to find linear relationships with air pollution measurement. 

Table 8. Correlation Analysis (N=662) 

Risk Factor Pollutant 24 hr 48 hr 72 hr 96 hr 

BMI PM2.5 0.070 0.064 0.080* 0.069 

PM10 0.022 0.018 0.017 0.009 

NO2 0.048 0.065 0.065 0.052 

O3 −0.010 −0.018 −0.024 −0.015 

Waist (overall) PM2.5 0.113* 0.121* 0.134* 0.129* 

PM10 0.031 0.043 0.045 0.045 

NO2 0.126* 0.149* 0.158* 0.142* 

O3 −0.098* −0.112* −0.117* −0.107* 

• Waist (female, N=559)  PM2.5 0.148* 0.161* 0.179* 0.171* 

PM10 0.050 0.068 0.076 0.077 

NO2 0.126* 0.157* 0.164* 0.141* 

O3 −0.100* −0.118* −0.123* −0.108* 

• Waist (male, N=103) PM2.5 −0.036 −0.060 −0.084 −0.063 

PM10 −0.056 −0.086 −0.127 −0.124 

NO2 0.150 0.126 0.130 0.155 

O3 −0.118 −0.109 −0.112 −0.128 
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Risk Factor Pollutant 24 hr 48 hr 72 hr 96 hr 

SBP PM2.5 −0.053 −0.053 −0.034 −0.030 

PM10 −0.049 −0.065 −0.053 −0.037 

NO2 −0.030 0.003 0.008 0.022 

O3 0.021 0.013 0.013 0.010 

•  SBP < 130 (N=377) PM2.5 −0.112* −0.090 −0.025 −0.015 

PM10 −0.106* −0.124* −0.076 −0.062 

NO2 −0.106* −0.062 −0.020 0.011 

O3 0.026 0.002 −0.023 −0.044 

•  SBP ≥ 130 (N=263) PM2.5 −0.033 −0.087 −0.102 −0.120 

PM10 −0.028 −0.055 −0.066 −0.053 

NO2 −0.006 −0.021 −0.049 −0.078 

O3 0.039 0.070 0.087 0.094 

DBP PM2.5 −0.075 −0.076 −0.069 −0.069 

PM10 −0.051 −0.050 −0.047 −0.045 

NO2 −0.015 −0.022 −0.032 −0.021 

O3 0.054 0.059 0.063 0.060 

• DBP < 85 (N=509) PM2.5 −0.062 −0.042 −0.009 0.017 

PM10 −0.052 −0.048 −0.026 0.000 

NO2 −0.034 −0.029 −0.014 0.020 

O3 0.044 0.033 0.016 0.007 

• DBP ≥ 85 (N=131)  PM2.5 0.016 −0.040 −0.054 −0.070 

PM10 −0.032 −0.036 −0.046 −0.057 

NO2 0.002 −0.062 −0.120 −0.126 

O3 −0.080 −0.015 0.015 0.011 

PBP PM2.5 −0.016 −0.016 0.006 0.012 

PM10 −0.029 −0.054 −0.038 −0.018 

NO2 −0.031 0.021 0.036 0.047 

O3 −0.013 −0.028 −0.031 −0.033 

TC PM2.5 −0.042 −0.009 −0.005 0.000 

PM10 −0.011 0.005 0.020 0.033 

NO2 −0.039 −0.034 −0.020 −0.017 

O3 −0.004 −0.006 −0.010 −0.009 

TG PM2.5 −0.006 −0.008 0.002 0.009 

PM10 −0.033 −0.046 −0.040 −0.033 

NO2 0.004 −0.005 0.007 0.027 

O3 −0.065 −0.062 −0.053 −0.053 

log.TG PM2.5 −0.004 −0.005 0.016 0.021 

PM10 −0.026 −0.039 −0.027 −0.020 

NO2 0.009 0.011 0.027 0.046 

O3 −0.059 −0.063 −0.061 −0.062 

HDL PM2.5 0.038 0.040 0.026 0.023 

PM10 0.049 0.042 0.043 0.045 

NO2 −0.031 −0.024 −0.037 −0.047 

O3 0.072 0.069 0.077 0.087* 

LDL PM2.5 −0.066 −0.016 −0.026 −0.019 

PM10 −0.048 −0.009 −0.011 0.000 

NO2 −0.028 −0.004 0.000 −0.006 

O3 0.008 −0.006 −0.013 −0.015 
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Risk Factor Pollutant 24 hr 48 hr 72 hr 96 hr 

TC/HDL PM2.5 −0.064 −0.038 −0.028 −0.016 

PM10 −0.044 −0.033 −0.027 −0.025 

NO2 −0.005 0.015 0.027 0.027 

O3 −0.013 −0.012 −0.011 −0.009 

log.TC/HDL PM2.5 −0.075 −0.042 −0.027 −0.018 

PM10 −0.060 −0.041 −0.033 −0.029 

NO2 0.006 0.024 0.039 0.042 

O3 −0.037 −0.039 −0.042 −0.044 

bc.TC/HDL1 PM2.5 −0.076 −0.041 −0.024 −0.016 

PM10 −0.065 −0.043 −0.035 −0.030 

NO2 0.012 0.029 0.045 0.049 

O3 −0.044 −0.048 −0.053 −0.055 

FBG PM2.5 0.019 0.024 −0.002 −0.012 

PM10 0.024 0.027 0.012 0.016 

NO2 0.004 0.006 −0.005 −0.017 

O3 0.008 −0.005 0.003 0.011 

log.FBG PM2.5 0.048 0.050 0.022 0.012 

PM10 0.051 0.050 0.032 0.036 

NO2 0.027 0.033 0.018 0.005 

O3 −0.011 −0.030 −0.023 −0.015 

bc.FBG2 PM2.5 0.087* 0.087* 0.065 0.059 

PM10 0.091* 0.084* 0.070 0.075 

NO2 0.054 0.064 0.052 0.043 

O3 −0.029 −0.052 −0.051 −0.045 

* All significant correlations are expressed in bold. 

1. Box-cox transformation: bc.TC/HDL = [(TC/HDL)^(−0.5)−1]/(−0.5). 

2. Box-cox transformation: bc.FBG = [FBG^(−2)−1]/(−2). 

Table 9. Association between Cardiovascular Outcome and Pollutant Metrics (N=662) 

Risk Factor Pollutant Window Estimate Std. Error t value p value 

BMI PM2.5 24 hr 0.086 0.048 1.792 0.074 

48 hr 0.089 0.055 1.631 0.103 

72 hr 0.132 0.065 2.036 0.042* 

96 hr 0.135 0.077 1.756 0.080 

PM10 24 hr 0.006 0.011 0.564 0.573 

48 hr 0.006 0.013 0.449 0.654 

72 hr 0.007 0.016 0.431 0.666 

96 hr 0.004 0.019 0.218 0.828 

NO2 24 hr 0.040 0.032 1.231 0.219 

48 hr 0.062 0.037 1.654 0.099 

72 hr 0.072 0.044 1.660 0.097 

96 hr 0.066 0.050 1.323 0.186 

O3 24 hr −0.006 0.024 −0.254 0.799 

48 hr −0.012 0.027 −0.469 0.639 

72 hr −0.017 0.027 −0.605 0.545 

96 hr −0.011 0.028 −0.384 0.701 



 

23 

Risk Factor Pollutant Window Estimate Std. Error t value p value 

Waist (overall) PM2.5 24 hr 0.301 0.104 2.901 0.004* 

48 hr 0.365 0.117 3.114 0.002* 

72 hr 0.486 0.141 3.459 0.001* 

96 hr 0.554 0.166 3.332 0.001* 

PM10 24 hr 0.019 0.024 0.783 0.434 

48 hr 0.031 0.028 1.100 0.272 

72 hr 0.041 0.035 1.154 0.249 

96 hr 0.048 0.042 1.153 0.249 

NO2 24 hr 0.225 0.070 3.238 0.001* 

48 hr 0.309 0.081 3.833 0.000* 

72 hr 0.382 0.094 4.060 0.000* 

96 hr 0.393 0.108 3.636 0.000* 

O3 24 hr −0.132 0.052 −2.527 0.012* 

48 hr −0.166 0.058 −2.870 0.004* 

72 hr −0.179 0.059 −3.014 0.003* 

96 hr −0.167 0.061 −2.754 0.006* 

● Waist (female, 
N=559) 

PM2.5 24 hr 0.386 0.110 3.508 0.000* 

48 hr 0.473 0.124 3.820 0.000* 

72 hr 0.625 0.147 4.262 0.000* 

96 hr 0.712 0.175 4.077 0.000* 

PM10 24 hr 0.029 0.025 1.172 0.242 

48 hr 0.048 0.030 1.595 0.111 

72 hr 0.067 0.037 1.799 0.073 

96 hr 0.079 0.044 1.805 0.072 

NO2 24 hr 0.221 0.075 2.953 0.003* 

48 hr 0.321 0.087 3.702 0.000* 

72 hr 0.392 0.101 3.868 0.000* 

96 hr 0.388 0.116 3.331 0.001* 

O3 24 hr −0.132 0.056 −2.351 0.019* 

48 hr −0.171 0.061 −2.781 0.006* 

72 hr −0.184 0.063 −2.900 0.004* 

96 hr −0.166 0.065 −2.558 0.011* 

● Waist (male, 
N=103) 

PM2.5 24 hr −0.104 0.287 −0.361 0.719 

48 hr −0.202 0.336 −0.602 0.549 

72 hr −0.368 0.434 −0.848 0.399 

96 hr −0.316 0.498 −0.635 0.527 

PM10 24 hr −0.040 0.071 −0.566 0.573 

48 hr −0.075 0.086 −0.868 0.387 

72 hr −0.137 0.107 −1.284 0.202 

96 hr −0.150 0.119 −1.258 0.211 

NO2 24 hr 0.273 0.180 1.517 0.132 

48 hr 0.270 0.212 1.275 0.205 

72 hr 0.318 0.243 1.307 0.194 

96 hr 0.438 0.280 1.566 0.121 

O3 24 hr −0.164 0.137 −1.194 0.235 

48 hr −0.176 0.161 −1.099 0.274 

72 hr −0.186 0.163 −1.136 0.259 

96 hr −0.215 0.165 −1.301 0.196 



 

24 

Risk Factor Pollutant Window Estimate Std. Error t value p value 

SBP PM2.5 24 hr −0.205 0.154 −1.331 0.184 

48 hr −0.234 0.175 −1.337 0.182 

72 hr −0.180 0.209 −0.862 0.389 

96 hr −0.185 0.246 −0.752 0.452 

PM10 24 hr −0.043 0.035 −1.228 0.220 

48 hr −0.069 0.042 −1.651 0.099 

72 hr −0.069 0.052 −1.334 0.183 

96 hr −0.057 0.060 −0.942 0.347 

NO2 24 hr −0.077 0.102 −0.752 0.453 

48 hr 0.008 0.119 0.072 0.943 

72 hr 0.028 0.138 0.202 0.840 

96 hr 0.086 0.157 0.548 0.584 

O3 24 hr 0.040 0.076 0.523 0.601 

48 hr 0.028 0.084 0.331 0.741 

72 hr 0.029 0.086 0.332 0.740 

96 hr 0.022 0.088 0.245 0.807 

● SBP (<130, 
N=377) 

PM2.5 24 hr −0.222 0.102 −2.167 0.031* 

48 hr −0.203 0.115 −1.756 0.080 

72 hr −0.067 0.139 −0.482 0.630 

96 hr −0.048 0.161 −0.297 0.766 

PM10 24 hr −0.047 0.023 −2.039 0.042* 

48 hr −0.066 0.028 −2.410 0.016* 

72 hr −0.050 0.034 −1.468 0.143 

96 hr −0.048 0.040 −1.197 0.232 

NO2 24 hr −0.140 0.068 −2.059 0.040* 

48 hr −0.098 0.081 −1.204 0.229 

72 hr −0.035 0.094 −0.377 0.706 

96 hr 0.022 0.105 0.210 0.834 

O3 24 hr 0.026 0.051 0.497 0.620 

48 hr 0.002 0.057 0.043 0.966 

72 hr −0.026 0.058 −0.441 0.659 

96 hr −0.051 0.060 −0.857 0.392 

● SBP (≥130, 
N=263) 

PM2.5 24 hr −0.092 0.173 −0.532 0.595 

48 hr −0.283 0.201 −1.410 0.160 

72 hr −0.396 0.238 −1.664 0.097 

96 hr −0.553 0.284 −1.947 0.053 

PM10 24 hr −0.018 0.040 −0.454 0.650 

48 hr −0.042 0.048 −0.882 0.379 

72 hr −0.063 0.059 −1.064 0.288 

96 hr −0.060 0.070 −0.856 0.393 

NO2 24 hr −0.010 0.115 −0.091 0.928 

48 hr −0.044 0.130 −0.340 0.734 

72 hr −0.119 0.152 −0.782 0.435 

96 hr −0.221 0.176 −1.257 0.210 

O3 24 hr 0.053 0.084 0.628 0.531 

48 hr 0.106 0.093 1.141 0.255 

72 hr 0.134 0.095 1.413 0.159 

96 hr 0.147 0.097 1.517 0.130 
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Risk Factor Pollutant Window Estimate Std. Error t value p value 

DBP PM2.5 24 hr −0.162 0.085 −1.906 0.057 

48 hr −0.185 0.097 −1.913 0.056 

72 hr −0.202 0.116 −1.745 0.082 

96 hr −0.239 0.136 −1.758 0.079 

PM10 24 hr −0.025 0.019 −1.276 0.203 

48 hr −0.029 0.023 −1.264 0.207 

72 hr −0.034 0.029 −1.197 0.232 

96 hr −0.038 0.033 −1.129 0.259 

NO2 24 hr −0.021 0.056 −0.376 0.707 

48 hr −0.035 0.065 −0.541 0.588 

72 hr −0.061 0.076 −0.800 0.424 

96 hr −0.045 0.086 −0.525 0.600 

O3 24 hr 0.058 0.042 1.374 0.170 

48 hr 0.070 0.046 1.504 0.133 

72 hr 0.076 0.048 1.591 0.112 

96 hr 0.074 0.049 1.518 0.130 

● DBP (<85, N=509) PM2.5 24 hr −0.088 0.063 −1.394 0.164 

48 hr −0.068 0.072 −0.944 0.345 

72 hr −0.018 0.087 −0.210 0.834 

96 hr 0.039 0.103 0.381 0.703 

PM10 24 hr −0.017 0.015 −1.171 0.242 

48 hr −0.019 0.018 −1.088 0.277 

72 hr −0.013 0.022 −0.576 0.565 

96 hr 0.000 0.026 0.007 0.995 

NO2 24 hr −0.033 0.044 −0.759 0.448 

48 hr −0.033 0.051 −0.646 0.518 

72 hr −0.019 0.060 −0.309 0.757 

96 hr 0.031 0.067 0.456 0.648 

O3 24 hr 0.033 0.033 1.000 0.318 

48 hr 0.027 0.036 0.742 0.458 

72 hr 0.013 0.037 0.360 0.719 

96 hr 0.006 0.038 0.160 0.873 

● DBP (≥85, N=131) PM2.5 24 hr 0.028 0.161 0.176 0.861 

48 hr −0.087 0.190 −0.456 0.649 

72 hr −0.130 0.213 −0.611 0.542 

96 hr −0.193 0.240 −0.801 0.425 

PM10 24 hr −0.012 0.032 −0.364 0.716 

48 hr −0.015 0.037 −0.409 0.683 

72 hr −0.024 0.046 −0.520 0.604 

96 hr −0.034 0.053 −0.644 0.521 

NO2 24 hr 0.002 0.082 0.023 0.982 

48 hr −0.065 0.093 −0.702 0.484 

72 hr −0.146 0.106 −1.367 0.174 

96 hr −0.180 0.126 −1.426 0.156 

O3 24 hr −0.055 0.061 −0.915 0.362 

48 hr −0.012 0.068 −0.173 0.863 

72 hr 0.012 0.070 0.167 0.868 

96 hr 0.009 0.073 0.120 0.904 
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Risk Factor Pollutant Window Estimate Std. Error t value p value 

PBP PM2.5 24 hr −0.042 0.108 −0.393 0.695 

48 hr −0.049 0.123 −0.399 0.690 

72 hr 0.021 0.147 0.145 0.885 

96 hr 0.054 0.173 0.311 0.756 

PM10 24 hr −0.018 0.024 −0.741 0.459 

48 hr −0.040 0.029 −1.356 0.176 

72 hr −0.035 0.036 −0.956 0.339 

96 hr −0.019 0.042 −0.452 0.652 

NO2 24 hr −0.056 0.072 −0.775 0.439 

48 hr 0.044 0.083 0.527 0.599 

72 hr 0.089 0.097 0.915 0.360 

96 hr 0.131 0.110 1.193 0.233 

O3 24 hr −0.018 0.053 −0.336 0.737 

48 hr −0.042 0.059 −0.712 0.477 

72 hr −0.047 0.061 −0.778 0.437 

96 hr −0.052 0.062 −0.846 0.398 

TC  PM2.5 24 hr −0.298 0.280 −1.064 0.288 

48 hr −0.069 0.318 −0.217 0.828 

72 hr −0.052 0.382 −0.135 0.893 

96 hr 0.004 0.452 0.008 0.994 

PM10 24 hr −0.018 0.064 −0.287 0.775 

48 hr 0.010 0.076 0.135 0.893 

72 hr 0.049 0.095 0.518 0.604 

96 hr 0.093 0.112 0.831 0.406 

NO2 24 hr −0.184 0.188 −0.981 0.327 

48 hr −0.189 0.219 −0.864 0.388 

72 hr −0.132 0.255 −0.515 0.607 

96 hr −0.128 0.293 −0.439 0.661 

O3 24 hr −0.015 0.141 −0.108 0.914 

48 hr −0.023 0.156 −0.147 0.883 

72 hr −0.040 0.160 −0.247 0.805 

96 hr −0.038 0.163 −0.230 0.819 

TG PM2.5 24 hr −0.136 0.829 −0.165 0.869 

48 hr −0.197 0.939 −0.210 0.834 

72 hr 0.072 1.129 0.064 0.949 

96 hr 0.302 1.337 0.226 0.821 

PM10 24 hr −0.159 0.189 −0.845 0.399 

48 hr −0.264 0.226 −1.171 0.242 

72 hr −0.287 0.280 −1.022 0.307 

96 hr −0.280 0.330 −0.849 0.396 

NO2 24 hr 0.053 0.557 0.096 0.924 

48 hr −0.075 0.648 −0.116 0.907 

72 hr 0.126 0.756 0.167 0.868 

96 hr 0.600 0.866 0.693 0.489 

O3 24 hr −0.697 0.417 −1.673 0.095 

48 hr −0.732 0.460 −1.594 0.111 

72 hr −0.642 0.473 −1.359 0.175 

96 hr −0.658 0.483 −1.362 0.174 



 

27 

Risk Factor Pollutant Window Estimate Std. Error t value p value 

log.TG PM2.5 24 hr 0.000 0.004 −0.110 0.913 

48 hr −0.001 0.005 −0.117 0.907 

72 hr 0.002 0.006 0.402 0.688 

96 hr 0.003 0.007 0.530 0.597 

PM10 24 hr −0.001 0.001 −0.655 0.513 

48 hr −0.001 0.001 −0.997 0.319 

72 hr −0.001 0.001 −0.678 0.498 

96 hr −0.001 0.002 −0.508 0.611 

NO2 24 hr 0.001 0.003 0.216 0.829 

48 hr 0.001 0.003 0.275 0.783 

72 hr 0.002 0.004 0.674 0.501 

96 hr 0.005 0.004 1.161 0.246 

O3 24 hr −0.003 0.002 −1.511 0.131 

48 hr −0.004 0.002 −1.611 0.108 

72 hr −0.004 0.002 −1.550 0.122 

96 hr −0.004 0.002 −1.594 0.111 

HDL PM2.5 24 hr 0.102 0.106 0.962 0.336 

48 hr 0.121 0.120 1.008 0.314 

72 hr 0.094 0.144 0.651 0.515 

96 hr 0.101 0.171 0.589 0.556 

PM10 24 hr 0.030 0.024 1.233 0.218 

48 hr 0.031 0.029 1.062 0.289 

72 hr 0.039 0.036 1.098 0.273 

96 hr 0.048 0.042 1.129 0.259 

NO2 24 hr −0.056 0.071 −0.792 0.428 

48 hr −0.050 0.083 −0.610 0.542 

72 hr −0.090 0.096 −0.938 0.349 

96 hr −0.129 0.110 −1.173 0.241 

O3 24 hr 0.098 0.053 1.838 0.066 

48 hr 0.104 0.059 1.763 0.078 

72 hr 0.117 0.060 1.946 0.052 

96 hr 0.136 0.062 2.206 0.028* 

LDL PM2.5 24 hr −0.391 0.241 −1.622 0.105 

48 hr −0.109 0.273 −0.399 0.690 

72 hr −0.203 0.326 −0.624 0.533 

96 hr −0.181 0.386 −0.469 0.639 

PM10 24 hr −0.062 0.054 −1.157 0.248 

48 hr −0.014 0.065 −0.218 0.827 

72 hr −0.022 0.080 −0.273 0.785 

96 hr −0.001 0.095 −0.010 0.992 

NO2 24 hr −0.110 0.161 −0.680 0.497 

48 hr −0.021 0.188 −0.109 0.913 

72 hr −0.002 0.219 −0.009 0.992 

96 hr −0.034 0.251 −0.137 0.891 

O3 24 hr 0.024 0.121 0.200 0.842 

48 hr −0.021 0.134 −0.159 0.874 

72 hr −0.042 0.137 −0.308 0.758 

96 hr −0.050 0.140 −0.355 0.723 
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Risk Factor Pollutant Window Estimate Std. Error t value p value 

TC/HDL PM2.5 24 hr −0.020 0.013 −1.591 0.112 

48 hr −0.014 0.014 −0.953 0.341 

72 hr −0.012 0.017 −0.707 0.480 

96 hr −0.008 0.020 −0.389 0.697 

PM10 24 hr −0.003 0.003 −1.096 0.274 

48 hr −0.003 0.003 −0.823 0.411 

72 hr −0.003 0.004 −0.676 0.499 

96 hr −0.003 0.005 −0.621 0.535 

NO2 24 hr −0.001 0.008 −0.124 0.902 

48 hr 0.004 0.010 0.368 0.713 

72 hr 0.008 0.011 0.662 0.508 

96 hr 0.009 0.013 0.672 0.502 

O3 24 hr −0.002 0.006 −0.338 0.735 

48 hr −0.002 0.007 −0.308 0.758 

72 hr −0.002 0.007 −0.288 0.774 

96 hr −0.002 0.007 −0.234 0.815 

log.TC/HDL PM2.5 24 hr −0.005 0.003 −1.873 0.062 

48 hr −0.003 0.003 −1.059 0.290 

72 hr −0.002 0.003 −0.681 0.496 

96 hr −0.002 0.004 −0.452 0.651 

PM10 24 hr −0.001 0.001 −1.501 0.134 

48 hr −0.001 0.001 −1.016 0.310 

72 hr −0.001 0.001 −0.835 0.404 

96 hr −0.001 0.001 −0.717 0.473 

NO2 24 hr 0.000 0.002 0.152 0.879 

48 hr 0.001 0.002 0.596 0.552 

72 hr 0.002 0.002 0.963 0.336 

96 hr 0.003 0.003 1.059 0.290 

O3 24 hr −0.001 0.001 −0.918 0.359 

48 hr −0.001 0.001 −0.977 0.329 

72 hr −0.002 0.001 −1.057 0.291 

96 hr −0.002 0.001 −1.109 0.268 

bc.TC/HDL PM2.5 24 hr −0.002 0.001 −1.904 0.057 

48 hr −0.001 0.001 −1.037 0.300 

72 hr −0.001 0.002 −0.606 0.545 

96 hr −0.001 0.002 −0.409 0.683 

PM10 24 hr 0.000 0.000 −1.616 0.107 

48 hr 0.000 0.000 −1.067 0.286 

72 hr 0.000 0.000 −0.870 0.384 

96 hr 0.000 0.000 −0.743 0.458 

NO2 24 hr 0.000 0.001 0.292 0.770 

48 hr 0.001 0.001 0.728 0.467 

72 hr 0.001 0.001 1.126 0.261 

96 hr 0.002 0.001 1.228 0.220 

O3 24 hr −0.001 0.001 −1.115 0.265 

48 hr −0.001 0.001 −1.209 0.227 

72 hr −0.001 0.001 −1.323 0.186 

96 hr −0.001 0.001 −1.394 0.164 
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Risk Factor Pollutant Window Estimate Std. Error t value p value 

FBG PM2.5 24 hr 0.166 0.336 0.495 0.621 

48 hr 0.237 0.381 0.622 0.534 

72 hr −0.025 0.458 −0.054 0.957 

96 hr −0.163 0.542 −0.300 0.764 

PM10 24 hr 0.047 0.076 0.614 0.539 

48 hr 0.064 0.092 0.697 0.486 

72 hr 0.034 0.114 0.298 0.766 

96 hr 0.053 0.134 0.398 0.690 

NO2 24 hr 0.024 0.225 0.105 0.917 

48 hr 0.042 0.262 0.160 0.873 

72 hr −0.040 0.306 −0.132 0.895 

96 hr −0.153 0.350 −0.438 0.662 

O3 24 hr 0.034 0.169 0.200 0.841 

48 hr −0.025 0.187 −0.135 0.893 

72 hr 0.012 0.192 0.064 0.949 

96 hr 0.054 0.196 0.274 0.784 

log.FBG PM2.5 24 hr 0.003 0.002 1.211 0.226 

48 hr 0.003 0.002 1.273 0.203 

72 hr 0.002 0.003 0.557 0.578 

96 hr 0.001 0.003 0.313 0.754 

PM10 24 hr 0.001 0.000 1.294 0.196 

48 hr 0.001 0.001 1.269 0.205 

72 hr 0.001 0.001 0.809 0.419 

96 hr 0.001 0.001 0.920 0.358 

NO2 24 hr 0.001 0.001 0.678 0.498 

48 hr 0.001 0.002 0.832 0.406 

72 hr 0.001 0.002 0.450 0.653 

96 hr 0.000 0.002 0.122 0.903 

O3 24 hr 0.000 0.001 −0.280 0.780 

48 hr −0.001 0.001 −0.754 0.451 

72 hr −0.001 0.001 −0.585 0.558 

96 hr 0.000 0.001 −0.375 0.708 

bc.FBG PM2.5 24 hr 0.000 0.000 2.220 0.027* 

48 hr 0.000 0.000 2.225 0.026* 

72 hr 0.000 0.000 1.673 0.095 

96 hr 0.000 0.000 1.517 0.130 

PM10 24 hr 0.000 0.000 2.324 0.020* 

48 hr 0.000 0.000 2.162 0.031* 

72 hr 0.000 0.000 1.794 0.073 

96 hr 0.000 0.000 1.924 0.055 

NO2 24 hr 0.000 0.000 1.369 0.171 

48 hr 0.000 0.000 1.632 0.103 

72 hr 0.000 0.000 1.330 0.184 

96 hr 0.000 0.000 1.097 0.273 

O3 24 hr 0.000 0.000 −0.750 0.453 

48 hr 0.000 0.000 −1.318 0.188 

72 hr 0.000 0.000 −1.294 0.196 

96 hr 0.000 0.000 −1.146 0.252 

*All significant pollutant time exposures and corresponding p-values are expressed in bold. 
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Table 10 shows the classification of MetS risk factors (binary outcomes) based on current guidelines. Table 11 

summarizes the associations between classification of MetS factors and pollutant metrics. Table 11 also shows 

effect estimates using logistic regression models, corresponding p-values, odds ratios, and 95 percent confidence 

intervals of the odds ratio. In logistic regression modeling, increasing PM2.5 and NO2 concentrations were 

associated with increasing likelihoods of a high waist circumference (p-values < 0.05 for 48-, 72-, and 96-hr PM2.5; 

p-values < 0.01 for all windows of NO2 concentration). However, the odds of having a high waist circumference 

decrease as the O3 level increases (p-values < 0.05 for 24-, 48-, 72-, and 96-hr O3). The O3 increase was also 

associated with less likelihood of having low HDL status (p-values < 0.05 for 24-, 48-, 72-, and 96-hr O3), and more 

exposures to O3 led to a lower odds ratio of having low HDL (0.983 for 24-hr O3, 0.980 for 48- and 72-hr O3, and 

0.976 for 96-hr O3).  

Table 10. Summary of MetS Risk Factors (N=662) 

Variable Value Frequency Percent 

HighWaist 1 411 62.1 

0 244 36.9 

NA 7 1.1 

HighBP 0 363 54.8 

1 277 41.8 

NA 22 3.3 

HighTC 0 410 61.9 

1 244 36.9 

NA 8 1.2 

HighTG 1 363 54.8 

0 291 44.0 

NA 8 1.2 

LowHDL 1 329 49.7 

0 315 47.6 

NA 18 2.7 

HighFBG 0 423 63.9 

1 231 34.9 

NA 8 1.2 

MetS 1 336 50.8 

0 307 46.4 

NA 19 2.9 

Table 11. Associations between MetS Risk Factors and MetS Classification and Pollutant Metrics (N=662) 

Variable Pollutant Window Estimate Std. Error 
z 

value 
p-value 

Odds 
Ratio 

Lower 
95% CI 

Upper 
95% CI 

HighWaist PM2.5 24 hr 0.030 0.016 1.902 0.057 1.031 1.000 1.065 

48 hr 0.038 0.018 2.084 0.037* 1.039 1.003 1.078 

72 hr 0.060 0.022 2.697 0.007* 1.062 1.018 1.112 

96 hr 0.070 0.026 2.697 0.007* 1.072 1.020 1.130 

PM10 24 hr 0.003 0.003 0.859 0.390 1.003 0.996 1.010 

48 hr 0.004 0.004 0.897 0.370 1.004 0.996 1.012 

72 hr 0.006 0.005 1.105 0.269 1.006 0.996 1.016 

96 hr 0.006 0.006 1.044 0.296 1.006 0.995 1.018 

NO2 24 hr 0.027 0.010 2.641 0.008* 1.027 1.007 1.048 

48 hr 0.036 0.012 3.028 0.002* 1.037 1.013 1.062 

72 hr 0.048 0.014 3.399 0.001* 1.050 1.021 1.080 

96 hr 0.055 0.016 3.373 0.001* 1.056 1.023 1.091 
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Variable Pollutant Window Estimate Std. Error 
z 

value 
p-value 

Odds 
Ratio 

Lower 
95% CI 

Upper 
95% CI  

O3 24 hr –0.016 0.008 –2.079 0.038* 0.984 0.970 0.999 

48 hr –0.019 0.008 –2.238 0.025* 0.981 0.965 0.998 

72 hr –0.021 0.009 –2.465 0.014* 0.979 0.963 0.996 

96 hr –0.022 0.009 –2.485 0.013* 0.978 0.962 0.995 

HighBP PM2.5 24 hr –0.012 0.015 –0.781 0.435 0.988 0.958 1.018 

48 hr –0.007 0.017 –0.410 0.682 0.993 0.959 1.027 

72 hr –0.009 0.021 –0.417 0.677 0.991 0.952 1.032 

96 hr –0.007 0.024 –0.300 0.764 0.993 0.946 1.041 

PM10 24 hr –0.002 0.003 –0.585 0.559 0.998 0.991 1.005 

48 hr –0.002 0.004 –0.525 0.600 0.998 0.990 1.006 

72 hr –0.003 0.005 –0.620 0.535 0.997 0.987 1.007 

96 hr –0.003 0.006 –0.471 0.637 0.997 0.986 1.009 

NO2 24 hr –0.002 0.010 –0.213 0.832 0.998 0.979 1.018 

48 hr 0.004 0.012 0.379 0.705 1.004 0.982 1.027 

72 hr 0.004 0.013 0.301 0.763 1.004 0.978 1.031 

96 hr 0.010 0.015 0.649 0.517 1.010 0.980 1.041 

O3 24 hr 0.005 0.007 0.719 0.472 1.005 0.991 1.020 

48 hr 0.003 0.008 0.331 0.741 1.003 0.987 1.019 

72 hr 0.004 0.008 0.489 0.625 1.004 0.988 1.021 

96 hr 0.004 0.009 0.519 0.603 1.004 0.988 1.022 

HighTG PM2.5 24 hr 0.001 0.015 0.061 0.951 1.001 0.973 1.030 

48 hr 0.000 0.016 0.020 0.984 1.000 0.969 1.033 

72 hr 0.012 0.020 0.615 0.538 1.012 0.974 1.053 

96 hr 0.016 0.024 0.668 0.504 1.016 0.970 1.064 

PM10 24 hr 0.001 0.003 0.378 0.705 1.001 0.995 1.008 

48 hr –0.001 0.004 –0.181 0.857 0.999 0.992 1.007 

72 hr 0.001 0.005 0.207 0.836 1.001 0.991 1.011 

96 hr 0.002 0.006 0.342 0.732 1.002 0.991 1.013 

NO2 24 hr 0.005 0.010 0.478 0.633 1.005 0.986 1.024 

48 hr 0.009 0.011 0.796 0.426 1.009 0.987 1.032 

72 hr 0.021 0.013 1.568 0.117 1.021 0.995 1.048 

96 hr 0.027 0.015 1.770 0.077 1.027 0.997 1.059 

O3 24 hr –0.011 0.007 –1.435 0.151 0.990 0.975 1.004 

48 hr –0.014 0.008 –1.690 0.091 0.986 0.971 1.002 

72 hr –0.016 0.008 –1.874 0.061 0.985 0.968 1.001 

96 hr –0.016 0.009 –1.919 0.055 0.984 0.967 1.000 

LowHDL PM2.5 24 hr –0.012 0.015 –0.837 0.403 0.988 0.960 1.016 

48 hr –0.006 0.016 –0.364 0.716 0.994 0.962 1.027 

72 hr 0.005 0.020 0.271 0.786 1.005 0.967 1.045 

96 hr 0.007 0.023 0.311 0.756 1.007 0.962 1.055 

PM10 24 hr –0.003 0.003 –1.057 0.291 0.997 0.990 1.003 

48 hr –0.003 0.004 –0.651 0.515 0.997 0.990 1.005 

72 hr –0.004 0.005 –0.747 0.455 0.996 0.987 1.006 

96 hr –0.005 0.006 –0.807 0.420 0.995 0.984 1.007 

NO2 24 hr 0.010 0.010 1.066 0.286 1.010 0.991 1.030 

48 hr 0.013 0.011 1.109 0.267 1.013 0.990 1.036 

72 hr 0.017 0.013 1.252 0.211 1.017 0.991 1.044 

96 hr 0.027 0.015 1.765 0.078 1.027 0.997 1.058 
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Variable Pollutant Window Estimate Std. Error 
z 

value 
p-value 

Odds 
Ratio 

Lower 
95% CI 

Upper 
95% CI 

O3 24 hr –0.017 0.007 –2.317 0.021* 0.983 0.969 0.997 

48 hr –0.020 0.008 –2.465 0.014* 0.980 0.964 0.996 

72 hr –0.021 0.008 –2.462 0.014* 0.980 0.964 0.996 

96 hr –0.024 0.009 –2.822 0.005* 0.976 0.960 0.993 

HighFBG PM2.5 24 hr 0.034 0.015 2.269 0.023* 1.034 1.005 1.065 

48 hr 0.037 0.017 2.197 0.028* 1.037 1.004 1.072 

72 hr 0.030 0.020 1.487 0.137 1.030 0.990 1.072 

96 hr 0.026 0.024 1.073 0.283 1.026 0.979 1.076 

PM10 24 hr 0.008 0.003 2.294 0.022* 1.008 1.001 1.014 

48 hr 0.008 0.004 2.011 0.044* 1.008 1.000 1.016 

72 hr 0.008 0.005 1.661 0.097 1.008 0.998 1.018 

96 hr 0.009 0.006 1.466 0.143 1.009 0.997 1.021 

NO2 24 hr 0.014 0.010 1.421 0.155 1.014 0.995 1.035 

48 hr 0.023 0.012 1.925 0.054 1.023 1.000 1.047 

72 hr 0.027 0.014 1.975 0.048* 1.027 1.000 1.055 

96 hr 0.024 0.016 1.551 0.121 1.025 0.994 1.057 

O3 24 hr –0.008 0.008 –1.030 0.303 0.992 0.977 1.007 

48 hr –0.014 0.008 –1.686 0.092 0.986 0.969 1.002 

72 hr –0.017 0.009 –1.899 0.058 0.983 0.967 1.000 

96 hr –0.015 0.009 –1.690 0.091 0.985 0.968 1.002 

MetS PM2.5 24 hr 0.022 0.015 1.422 0.155 1.022 0.992 1.053 

48 hr 0.029 0.017 1.692 0.091 1.030 0.996 1.066 

72 hr 0.037 0.021 1.772 0.076 1.037 0.997 1.081 

96 hr 0.049 0.024 2.025 0.043* 1.051 1.002 1.103 

PM10 24 hr 0.003 0.003 0.922 0.357 1.003 0.997 1.010 

48 hr 0.003 0.004 0.746 0.456 1.003 0.995 1.011 

72 hr 0.003 0.005 0.692 0.489 1.003 0.994 1.013 

96 hr 0.005 0.006 0.883 0.377 1.005 0.994 1.017 

NO2 24 hr 0.019 0.010 1.888 0.059 1.019 0.999 1.039 

48 hr 0.027 0.012 2.305 0.021* 1.027 1.004 1.051 

72 hr 0.039 0.014 2.877 0.004* 1.040 1.013 1.068 

96 hr 0.054 0.016 3.475 0.001* 1.056 1.024 1.089 

O3 24 hr –0.018 0.007 –2.470 0.014* 0.982 0.968 0.996 

48 hr –0.025 0.008 –3.010 0.003* 0.975 0.960 0.991 

72 hr –0.026 0.008 –3.008 0.003* 0.975 0.959 0.991 

96 hr –0.027 0.009 –3.079 0.002* 0.974 0.957 0.990 

*All significant pollutant time exposures and corresponding p-values are expressed in bold. 

Note: CI means confidence interval. 

The likelihood of having high glucose was associated with increased PM concentrations: 1.034 and 1.037 times 

higher odds of having high glucose per a one-unit increase in 24- and 48-hr PM2.5, respectively (p-values < 0.05). A 

one-unit increase in both 24- and 48-hr PM10 results in 1.008 times higher odds of being high glucose (p-values < 

0.05). The 72-hr NO2 concentration was also a significant factor in prediction of the high-glucose status, showing an 

increased likelihood of having high glucose as NO2 increases (odds ratio = 1.027; p-value = 0.048). 

The MetS classification based on the combination of five risk factors showed significant associations with PM2.5, 

NO2, and O3. More precisely, the odds of having MetS is 1.051 times higher with a unit increase in 96-hr PM2.5 

(p-value = 0.043). The associations of MetS classification with NO2 concentrations are also positive, showing the 
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increased odds ratio of 1.027 (p-value = 0.021), 1.040 (p-value = 0.004), and 1.056 (p-value = 0.001) for 48-, 72-, 

and 96-hr exposure windows, respectively. However, the increased O3 was correlated with a decreased likelihood 

of having MetS (p-values < 0.05 for all time exposures). 

Long-Term Effects of Transportation Data on Cardiorespiratory Outcomes 

Demographics 
Using the full dataset, which contains data from participants from the last five and a half years (September 2014 to 

January 2020), researchers identified 4,959 participants with an age range of 18 to 94 years old (an average of 

45.5 years old). Most of the participants were female (79.5 percent) and Hispanic (95.5 percent), and 54.8 percent 

of participants were overweight (23.9 percent) or obese (30.9 percent), whereas 13.7 percent of participants were 

not overweight. Table 12 shows summary statistics of subject demographic information and health characteristics. 

Table 12. Demographic Information for Subjects (N=4,959) 

Characteristic Frequency Percent 

Sex 
  
  

Female 3,941 79.5 

Male 954 19.2 

NA 64 1.3 

Education 
  
  
  
  
  
  
  
  
  

Middle school 896 18.1 

High school graduate 832 16.8 

High school, no diploma 723 14.6 

Elementary school 680 13.7 

Some college, not completed 636 12.8 

Bachelor’s degree 532 10.7 

Associate degree 319 6.4 

Masters, doctoral, or professional degree 119 2.4 

Never attended or kindergarten only 72 1.5 

NA 150 3.0 

Language 
  
  
  
  

Spanish 3,408 68.7 

Both 1,050 21.2 

English 396 8.0 

Other 8 0.2 

NA 97 2.0 

Employed 
  
  
  
  
  
  
  
  
  
  

Homemaker 1,606 32.4 

Employed part time 1,025 20.7 

Employed full time 795 16.0 

Student 313 6.3 

Retired 290 5.8 

Not employed for more than 1 year 232 4.7 

Not employed for less than 1 year 228 4.6 

Self-employed 197 4.0 

Unable to work 126 2.5 

Seasonal worker 17 0.3 

NA 129 2.6 
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Characteristic Frequency Percent 

Income 
  
  
  
  
  
  
  

$0–$19,999 3,532 71.2 

$20,000–$29,999 603 12.2 

$30,000–$39,999 237 4.8 

$50,000–$69,999 142 2.9 

$40,000–$49,999 133 2.7 

$70,000–$99,999 62 1.3 

$100,000 or more 51 1.0 

NA 199 4.0 

Marital  
status  
  
  
  
  
  
  
  

Married 2,248 45.3 

Never married 905 18.2 

Divorced 453 9.1 

Separated 407 8.2 

Single/never married 313 6.3 

Widowed 313 6.3 

A member of an unmarried couple 148 3.0 

Civil union 70 1.4 

NA 102 2.1 

Ethnicity 
  
  
  
  
  
  
  
  

Hispanic 4,738 95.5 

Non-Hispanic 79 1.6 

White 41 0.8 

Black or African American 9 0.2 

Asian 4 0.1 

American Indian or Alaska Native 3 0.1 

Native Hawaiian 2 0.0 

Other 1 0.0 

NA 82 1.7 

Race 
  
  
  
  
  

White 3,302 66.6 

Black or African American 40 0.8 

American Indian or Alaska Native 16 0.3 

Asian 14 0.3 

Native Hawaiian 3 0.1 

NA 1,584 31.9 

Health 
  
  
  
  
  

Good 2,072 41.8 

Fair 1,457 29.4 

Very good 575 11.6 

Poor 400 8.1 

Excellent 339 6.8 

NA 116 2.3 

Obesity 
  
  
  

Obese 1,534 30.9 

Overweight 1,185 23.9 

Healthy 681 13.7 

NA 1,559 31.4 

Traffic-Related Measurements  
Table 13 summarizes the descriptive statistics of traffic-related measurements using the first-year subset of data 

(N=662). Distance to the nearest major arterial road (Dist_nearest_Majart), street length within the 500-m and 

1,000-m impact zones (Street_Length_500m and Street_Length_1000m), and distance to the nearest POE 

(Distance_nearest_POE) are measured in kilometers. Due to the exponential decay of distance measurements, 

researchers also considered the inverse of distance to the nearest POE (InvDist_POE) and the inverse of the 
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distance squared (InvSqDis_POE) as alternatives. Traffic counts were calculated from the average daily amount of 

VMT within the 500-m and 1,000-m zones of impact (Traffic_VMT_500m and Traffic_VMT_1000m) and converted 

to the unit in thousands. 

Table 13. Descriptive Statistics of Traffic Variables (N=662; Unit: km, in Thousands) 

Variable Min. Q1 Median Mean Q3 Max. SD IQR NA 

Distance_nearest_Majart 0.00 0.09 0.20 0.24 0.32 2.26 0.22 0.23 3 

Street_Length_500m 3.04 8.46 10.96 11.48 14.16 24.85 3.97 5.70 4 

Street_Length_1000m 14.09 34.32 44.42 43.60 50.36 81.15 12.76 16.04 4 

Distance_nearest_POE 0.25 2.16 6.60 6.85 11.15 25.36 5.12 8.99 3 

InvDist_POE 0.04 0.09 0.15 0.35 0.46 4.05 0.42 0.37 3 

InvSqDist_POE 0.00 0.01 0.02 0.29 0.21 16.44 1.09 0.21 3 

Traffic_VMT_500m 0.00 13.82 21.98 26.56 33.57 152.94 21.99 19.75 3 

Traffic_VMT_1000m 0.31 61.73 110.53 126.45 164.79 412.10 85.01 103.06 3 

Figure 11 shows the scatterplot matrix for the pairs of traffic variables to explore the distribution of each variable 

and collinearity between variables. Based on the scatterplot, researchers decided to choose the impact zone with a 

500-m radius to use multivariate regression models. 

 

Figure 11. Scatterplot matrix of pairs of eight traffic variables (N=662). 

Table 14 summarizes the descriptive statistics of traffic-related measurements for the whole study period 

(N=4,959). Figure 12 presents the scatterplot matrix for the pairs of traffic variables to explore the distribution of 

each variable and collinearity between variables. Based on the scatterplot, researchers decided to choose the 

impact zone with a 500-m radius to use in multivariate regression models. 
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Table 14. Descriptive Statistics of Traffic Variables (N=4,959; Unit: km, in Thousands) 

Variable Min. Q1 Median Mean Q3 Max. SD IQR NA 

Distance_nearest_Majart 0.00 0.10 0.22 0.33 0.43 3.35 0.34 0.32 152 

Street_Length_500m 0.28 7.84 10.23 10.73 13.18 25.51 4.23 5.34 174 

Street_Length_1000m 0.20 28.88 36.95 39.20 48.29 83.04 15.40 19.41 168 

Distance_nearest_POE 0.16 3.39 8.62 9.48 13.81 37.58 7.00 10.42 152 

InvDist_POE.km 0.03 0.07 0.12 0.28 0.29 6.15 0.46 0.22 152 

InvSqDist_POE.km 0.00 0.01 0.01 0.29 0.09 37.78 1.70 0.08 152 

Traffic_VMT_500m 0.00 6.92 15.49 23.34 27.69 178.54 27.47 20.77 319 

Traffic_VMT_1000m 0.17 33.96 65.65 102.38 136.48 437.44 100.86 102.52 176 

 

Figure 12. Scatterplot matrix of pairs of eight traffic variables (N=4,959). 

Respiratory Associations Using First-Year Subset of Data 
In the correlation analysis and univariate linear regression modeling, the length of the street and VMT have shown 

to be important traffic predictors to find relationships with lung function (see Table 15). Increases in the length of 

the street within the 500-m radius zone were associated with decreased lung function: β1 = −0.017 for FEV1 

(p-value = 0.016), β1 = −0.017 for FVC (p-value = 0.045), β1 = −0.049 for PEF (p-value = 0.011), and β1 = −0.046 for 

PEF Best (p-value = 0.021). The founding was similar in the relationships between FEV1/FVC/PEF/PEF Best and 

street length within a bigger zone of a 1,000-m radius.  
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Table 15. Correlation Analysis between Respiratory Outcome and Traffic Variables (N=662) 

Variable 
Distance_ 
nearest_ 
Majart 

Street_ 
Length_ 

500m 

Street_ 
Length_ 
1000m 

Distance_ 
nearest_ 

POE 

InvDist_ 
POE 

InvSqDist 
_POE 

Traffic_ 
VMT_ 
500m 

Traffic_ 
VMT_ 
1000m 

log(eNO) 0.008 0.036 0.003 −0.052 0.025 −0.007 0.034 0.013 

FEV1 0.071 −0.108* −0.108* 0.021 0.010 0.055 −0.125* −0.048 

FVC 0.072 −0.090* −0.091* 0.047 −0.014 0.032 −0.116* −0.051 

PEF 0.090* −0.114* −0.141* −0.006 −0.006 0.027 −0.097* −0.017 

FEV1 %Pred 0.031 0.010 0.009 −0.105* 0.134* 0.118* −0.054 0.001 

bc.FEV %Pred1 0.040 0.010 0.006 −0.115* 0.118* 0.095* −0.052 0.006 

FVC %Pred 0.041 0.007 0.013 −0.077 0.101* 0.093* −0.066 −0.009 

log.FVC %Pred 0.038 0.006 0.012 −0.082 0.088* 0.069 −0.062 −0.002 

PEF %Pred 0.047 −0.046 −0.063 −0.108* 0.075 0.065 −0.060 0.013 

sqrt.PEF %Pred 0.053 −0.050 −0.066 −0.112* 0.072 0.063 −0.053 0.024 

FEV1/FVC −0.001 −0.024 −0.033 −0.086 0.066 0.061 −0.019 −0.001 

FEV0.5 Best 0.054 −0.079 −0.086 −0.014 0.041 0.070 −0.116* −0.037 

FEV1 Best 0.048 −0.079 −0.075 0.005 0.025 0.055 −0.116* −0.046 

FVC Best 0.051 −0.068 −0.060 0.039 −0.006 0.027 −0.100* −0.043 

PEF Best 0.064 −0.103* −0.127* −0.016 0.010 0.045 −0.096* −0.015 

* All significant correlations are expressed in bold. 

1. Box-cox transformation: bc.FEV1.%Pred = [(FEV1.%Pred)^(−0.1)−1]/(−0.1) 

Traffic density within the 500-m impact zone was also negatively correlated with most of the spirometry measures: 

β1 = −0.004 for FEV1 (p-value = 0.005), β1 = −0.004 for FVC (p-value = 0.010), β1 = −0.008 for PEF (p-value = 0.031), 

β1 = −0.003 for FEV0.5 Best and FEV1 Best (p-values = 0.010), β1 = −0.004 for FVC Best (p-value = 0.026), and β1 = 

−0.008 for PEF Best (p-value = 0.033). The traffic amount within the 1,000-m zone, in contrast, did not correlate 

with any respiratory measures. In addition to street length and VMT variables, distance to the nearest major road 

was another significant predictor, showing a positive correlation with PEF (ρ= 0.09, β1 = 0.663; p-value = 0.045). 

For the LUR modeling as shown in Table 16, researchers applied multivariate linear regression including five traffic 

variables: distance to the nearest major arterial road, street length within the 500-m impact zone, distance to the 

nearest POE, inverse of the distance to the POE squared, and traffic VMT within the 500-m zone. As with findings 

from the univariate regression, street length within the 500-m zone was a significant traffic variable in modeling of 

PEF (β1 = −0.056, p-value = 0.026) and PEF Best (β1 = −0.057, p-value = 0.025). A measure of traffic volume 

(Traffic_VMT_500m) had negative associations with FEV0.5 Best and FEV1 Best, though it reported insignificant 

p-values < 0.1.  
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Table 16. Summary and Parameter Estimates of Multivariate Regression Models for Respiratory Outcomes 
(N=662) 

Y Traffic Variable Estimate Std. Error t value Pr(>|t|) 

log.eNO (Intercept) 2.913 0.023 128.220 0.000 

Distance_nearest_Majart 0.043 0.139 0.308 0.758 

Street_Length_500m 0.003 0.008 0.368 0.713 

Distance_nearest_POE −0.005 0.005 −1.124 0.261 

InvSqDist_POE −0.014 0.022 −0.645 0.519 

Traffic_VMT_500m 0.001 0.001 0.525 0.599 

FEV1 (Intercept) 2.396 0.028 86.197 0.000 

Distance_nearest_Majart 0.110 0.134 0.820 0.413 

Street_Length_500m −0.017 0.009 −1.843 0.066 

Distance_nearest_POE 0.000 0.006 −0.014 0.989 

InvSqDist_POE 0.059 0.026 2.302 0.022* 

Traffic_VMT_500m −0.002 0.001 −1.584 0.114 

FVC (Intercept) 2.642 0.033 80.533 0.000 

Distance_nearest_Majart 0.147 0.158 0.926 0.355 

Street_Length_500m −0.012 0.011 −1.074 0.283 

Distance_nearest_POE 0.004 0.007 0.614 0.540 

InvSqDist_POE 0.050 0.030 1.665 0.097 

Traffic_VMT_500m −0.003 0.002 −1.633 0.103 

PEF (Intercept) 5.279 0.075 69.972 0.000 

Distance_nearest_Majart 0.399 0.364 1.096 0.274 

Street_Length_500m −0.056 0.025 −2.235 0.026* 

Distance_nearest_POE −0.015 0.016 −0.914 0.361 

InvSqDist_POE 0.113 0.070 1.623 0.105 

Traffic_VMT_500m −0.003 0.004 −0.724 0.470 

FEV1%Pred (Intercept) 96.021 1.370 70.071 0.000 

Distance_nearest_Majart 6.931 6.617 1.048 0.295 

Street_Length_500m −0.250 0.452 −0.553 0.580 

Distance_nearest_POE −0.611 0.290 −2.103 0.036* 

InvSqDist_POE 2.997 1.265 2.369 0.018* 

Traffic_VMT_500m −0.076 0.072 −1.044 0.297 

bc.FEV1%Pred (Intercept) 3.641 0.007 510.238 0.000 

Distance_nearest_Majart 0.044 0.034 1.285 0.199 

Street_Length_500m −0.001 0.002 −0.394 0.693 

Distance_nearest_POE −0.004 0.002 −2.476 0.014* 

InvSqDist_POE 0.012 0.007 1.749 0.081 

Traffic_VMT_500m 0.000 0.000 −0.976 0.330 

FVC %Pred (Intercept) 84.733 1.093 77.489 0.000 

Distance_nearest_Majart 6.554 5.280 1.241 0.215 

Street_Length_500m −0.034 0.361 −0.094 0.925 

Distance_nearest_POE −0.362 0.232 −1.561 0.119 

InvSqDist_POE 1.869 1.009 1.852 0.065 

Traffic_VMT_500m −0.078 0.058 −1.348 0.178 
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Y Traffic Variable Estimate Std. Error t value Pr(>|t|) 

log.FVC %Pred (Intercept) 4.407 0.011 391.189 0.000 

Distance_nearest_Majart 0.064 0.054 1.171 0.242 

Street_Length_500m 0.000 0.004 0.017 0.987 

Distance_nearest_POE −0.004 0.002 −1.772 0.077 

InvSqDist_POE 0.013 0.010 1.243 0.214 

Traffic_VMT_500m −0.001 0.001 −1.297 0.195 

PEF %Pred (Intercept) 95.949 1.204 79.693 0.000 

Distance_nearest_Majart 5.796 5.814 0.997 0.319 

Street_Length_500m −0.652 0.397 −1.641 0.101 

Distance_nearest_POE −0.700 0.255 −2.743 0.006* 

InvSqDist_POE 1.770 1.111 1.593 0.112 

Traffic_VMT_500m −0.035 0.064 −0.557 0.578 

sqrt.PEF %Pred (Intercept) 9.702 0.060 160.660 0.000 

Distance_nearest_Majart 0.338 0.292 1.160 0.247 

Street_Length_500m −0.036 0.020 −1.812 0.071 

Distance_nearest_POE −0.037 0.013 −2.915 0.004* 

InvSqDist_POE 0.088 0.056 1.575 0.116 

Traffic_VMT_500m −0.001 0.003 −0.303 0.762 

FEV1/FVC (Intercept) 0.915 0.003 290.795 0.000 

Distance_nearest_Majart −0.002 0.015 −0.137 0.891 

Street_Length_500m −0.002 0.001 −1.518 0.130 

Distance_nearest_POE −0.001 0.001 −1.966 0.050* 

InvSqDist_POE 0.004 0.003 1.402 0.162 

Traffic_VMT_500m 0.000 0.000 0.035 0.972 

FEV0.5Best (Intercept) 1.991 0.022 88.556 0.000 

Distance_nearest_Majart 0.064 0.109 0.592 0.554 

Street_Length_500m −0.011 0.007 −1.499 0.134 

Distance_nearest_POE −0.003 0.005 −0.586 0.558 

InvSqDist_POE 0.047 0.021 2.266 0.024* 

Traffic_VMT_500m −0.002 0.001 −1.683 0.093 

FEV1Best (Intercept) 2.505 0.029 87.041 0.000 

Distance_nearest_Majart 0.064 0.139 0.461 0.645 

Street_Length_500m −0.012 0.009 −1.269 0.205 

Distance_nearest_POE −0.001 0.006 −0.166 0.868 

InvSqDist_POE 0.052 0.027 1.964 0.050 

Traffic_VMT_500m −0.003 0.002 −1.765 0.078 

FVCBest (Intercept) 2.762 0.035 79.642 0.000 

Distance_nearest_Majart 0.100 0.167 0.595 0.552 

Street_Length_500m −0.008 0.011 −0.680 0.497 

Distance_nearest_POE 0.004 0.007 0.570 0.569 

InvSqDist_POE 0.041 0.032 1.289 0.198 

Traffic_VMT_500m −0.003 0.002 −1.549 0.122 

PEFBest (Intercept) 6.099 0.077 78.796 0.000 

Distance_nearest_Majart 0.220 0.374 0.588 0.557 

Street_Length_500m −0.057 0.026 −2.241 0.025* 

Distance_nearest_POE −0.016 0.016 −0.945 0.345 

InvSqDist_POE 0.137 0.071 1.920 0.055 

Traffic_VMT_500m −0.004 0.004 −0.868 0.386 

*All significant predictors and corresponding p-values are expressed in bold. 
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Cardiovascular Associations Using First-Year Subset of Data  
Correlation and univariate regression analyses showed that a few MetS risk factors were associated with the 

inverse distance and inverse squared distance to the nearest POE (see Table 17). The inverse of the distance to the 

nearest POE was associated with increases in fasting glucose and TG (ρ = 0.153, β1 = 17.124, p-value < 0.001; ρ = 

0.081, β1 = 22.351, p-value = 0.039, respectively). The inverse of the distance squared to the POE also showed 

positive correlations with fasting glucose and TG (ρ = 0.217, β1 = 9.209, p-value < 0.001; ρ = 0.134, β1 = 14.086, 

p-value = 0.001, respectively), implying that the metabolic risk related to fasting glucose and TG decreases as 

subjects live farther away from the POE. BMI calculation and waist circumference are also health outcomes 

correlated with inverse squared distance to the POE (ρ = 0.077, β1 = 0.462, p-value = 0.050; ρ = 0.095, β1 = 1.251, 

p-value = 0.015, respectively). In particular, female waist circumference was associated with the street length for 

both impact zones (β1 = 0.313, p-value = 0.047 for the 500-m zone; β1 = 0.108, p-value = 0.024 for the 1,000-m 

zone), as well as the inverse squared distance to the POE (β1 = 2.187, p-value = 0.007).  

Table 17. Correlation Analysis (N=662) 

Characteristic 
Distance_ 
nearest_ 
Majart 

Street_ 
Length_ 

500m 

Street_ 
Length_ 
1000m 

Distance_ 
nearest_ 

POE 

InvDist_ 
POE 

InvSqDist 
_POE 

Traffic_ 
VMT_ 
500m 

Traffic_ 
VMT_ 
1000m 

BMI 0.063 0.031 0.042 0.014 0.046 0.077* −0.020 0.003 

Waist 0.033 0.064 0.075 0.015 0.068 0.095* 0.023 0.045 

• Female 0.004 0.085* 0.096* 0.011 0.081 0.115* 0.026 0.031 

• Male 0.111 −0.043 −0.013 0.010 0.005 0.058 0.020 0.115 

SBP 0.023 0.008 0.016 0.028 0.024 0.054 0.038 0.030 

• SBP < 130 0.086 −0.079 −0.091 0.102* −0.053 −0.010 −0.016 −0.019 

• SBP ≥130 0.107 −0.073 −0.085 0.024 −0.024 −0.012 −0.004 −0.027 

DBP 0.007 0.005 0.015 0.069 0.015 0.044 0.048 0.018 

• DBP < 85 −0.060 −0.048 −0.017 0.051 −0.022 0.010 0.039 0.003 

• DBP ≥ 85 0.016 0.122 0.070 0.003 0.031 −0.026 0.087 −0.028 

PBP 0.028 0.007 0.012 −0.014 0.023 0.042 0.017 0.028 

TC 0.053 −0.035 −0.069 −0.017 0.024 0.070 −0.018 −0.046 

TG 0.078* 0.056 −0.015 0.025 0.081* 0.134* −0.030 −0.080* 

log.TG 0.087* 0.049 −0.003 0.036 0.053 0.100* −0.033 −0.069 

HDL 0.004 −0.032 −0.020 −0.026 −0.024 −0.033 −0.028 0.009 

LDL 0.013 −0.039 −0.061 −0.032 −0.035 −0.057 0.030 −0.017 

TC/HDL 0.015 0.012 0.003 0.006 0.031 0.071 0.016 −0.035 

log.TC/HDL 0.042 0.015 −0.003 0.013 0.024 0.060 0.017 −0.031 

bc.TC/HDL1 0.053 0.013 −0.006 0.014 0.018 0.049 0.013 −0.027 

FBG −0.036 0.074 0.054 −0.039 0.153* 0.217* 0.010 0.006 

log.FBG −0.024 0.059 0.058 −0.053 0.127* 0.166* 0.003 0.023 

bc.FBG2 −0.006 0.040 0.068 −0.059 0.084* 0.095* −0.004 0.045 

* All significant correlations are expressed in bold. 

1. Box-cox transformation: bc.TC/HDL = [(TC/HDL)^(−0.5) −1]/( −0.5). 

2. Box-cox transformation: bc.FBG = [FBG^(−2) −1]/( −2).  

Separate logistic regression models were run for each traffic variable of interest to evaluate the binary outcome of 

the MetS factors. Table 18 summarizes the associations between the classification of MetS factors and traffic 

variables. The logistic regression models showed that the street length within the 1,000-m impact zone was also a 

significant factor related to a higher risk of high BP (odds ratio = 1.013, p-value = 0.048). The increase in the length 

of the street within the 1,000-m zone was also associated with the risk of high SBP1 (odds ratio = 1.014, p-value = 

0.030), and the high value in SBP1 may play a role in determining high BP.  
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Table 18. Univariate Associations between MetS Risk Factors and MetS Classification and Traffic Variables 
(N=662) 

Y Traffic Variable Estimate 
Std. 

Error 
z value Pr(>|z|) 

Odds 
Ratio 

Lower 
95% CI 

Upper 
95% CI 

HighWaist Distance_nearest_Majart −0.220 0.364 −0.605 0.545 0.802 0.391 1.663 

Street_Length_500m 0.009 0.021 0.422 0.673 1.009 0.969 1.051 

Street_Length_1000m 0.007 0.006 1.115 0.265 1.007 0.995 1.020 

Distance_nearest_POE 0.017 0.016 1.031 0.303 1.017 0.985 1.050 

InvDist_POE.km −0.042 0.193 −0.217 0.828 0.959 0.658 1.417 

InvSqDist_POE.km 0.012 0.076 0.162 0.871 1.012 0.877 1.202 

Traffic_VMT_500m 0.000 0.004 0.054 0.957 1.000 0.993 1.008 

Traffic_VMT_1000m 0.001 0.001 0.844 0.398 1.001 0.999 1.003 

HighBP Distance_nearest_Majart −0.449 0.385 −1.166 0.244 0.638 0.290 1.326 

Street_Length_500m 0.030 0.020 1.495 0.135 1.031 0.991 1.073 

Street_Length_1000m 0.013 0.006 1.977 0.048* 1.013 1.000 1.025 

Distance_nearest_POE 0.004 0.016 0.266 0.790 1.004 0.974 1.035 

InvDist_POE.km 0.228 0.193 1.182 0.237 1.256 0.862 1.852 

InvSqDist_POE.km 0.146 0.093 1.567 0.117 1.157 0.988 1.445 

Traffic_VMT_500m 0.005 0.004 1.301 0.193 1.005 0.998 1.012 

Traffic_VMT_1000m 0.001 0.001 1.103 0.270 1.001 0.999 1.003 

HighTC Distance_nearest_Majart 0.612 0.394 1.552 0.121 1.843 0.854 4.058 

Street_Length_500m −0.036 0.021 −1.716 0.086 0.965 0.926 1.005 

Street_Length_1000m −0.016 0.007 −2.405 0.016* 0.984 0.972 0.997 

Distance_nearest_POE 0.007 0.016 0.454 0.650 1.007 0.976 1.039 

InvDist_POE.km 0.040 0.194 0.206 0.837 1.041 0.704 1.517 

InvSqDist_POE.km 0.088 0.076 1.159 0.246 1.092 0.945 1.295 

Traffic_VMT_500m −0.003 0.004 −0.910 0.363 0.997 0.989 1.004 

Traffic_VMT_1000m −0.002 0.001 −2.196 0.028* 0.998 0.996 1.000 

HighTG Distance_nearest_Majart 0.919 0.424 2.168 0.030* 2.507 1.124 5.931 

Street_Length_500m 0.015 0.020 0.762 0.446 1.015 0.976 1.056 

Street_Length_1000m 0.000 0.006 −0.014 0.989 1.000 0.988 1.012 

Distance_nearest_POE 0.021 0.016 1.327 0.185 1.021 0.990 1.053 

InvDist_POE.km 0.107 0.193 0.558 0.577 1.113 0.767 1.646 

InvSqDist_POE.km 0.149 0.106 1.403 0.161 1.161 0.978 1.503 

Traffic_VMT_500m −0.003 0.004 −0.929 0.353 0.997 0.990 1.004 

Traffic_VMT_1000m −0.001 0.001 −1.423 0.155 0.999 0.997 1.000 

LowHDL Distance_nearest_Majart 0.055 0.386 0.143 0.886 1.057 0.494 2.276 

Street_Length_500m 0.025 0.020 1.226 0.220 1.025 0.985 1.067 

Street_Length_1000m 0.009 0.006 1.489 0.137 1.009 0.997 1.022 

Distance_nearest_POE 0.009 0.016 0.581 0.561 1.009 0.979 1.041 

InvDist_POE.km 0.123 0.191 0.643 0.520 1.131 0.779 1.664 

InvSqDist_POE.km 0.067 0.079 0.856 0.392 1.070 0.925 1.284 

Traffic_VMT_500m 0.002 0.004 0.640 0.522 1.002 0.995 1.009 

Traffic_VMT_1000m 0.000 0.001 0.389 0.697 1.000 0.999 1.002 
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Y Traffic Variable Estimate 
Std. 

Error 
z value Pr(>|z|) 

Odds 
Ratio 

Lower 
95% CI 

Upper 
95% CI 

HighFBG Distance_nearest_Majart 0.463 0.394 1.176 0.240 1.589 0.730 3.474 

Street_Length_500m −0.001 0.021 −0.051 0.960 0.999 0.959 1.040 

Street_Length_1000m 0.002 0.006 0.348 0.728 1.002 0.990 1.015 

Distance_nearest_POE −0.013 0.016 −0.799 0.424 0.987 0.956 1.019 

InvDist_POE.km 0.170 0.193 0.880 0.379 1.185 0.806 1.734 

InvSqDist_POE.km 0.078 0.074 1.056 0.291 1.081 0.935 1.273 

Traffic_VMT_500m −0.003 0.004 −0.725 0.468 0.997 0.990 1.005 

Traffic_VMT_1000m 0.000 0.001 0.397 0.692 1.000 0.998 1.002 

MetS Distance_nearest_Majart 0.133 0.387 0.343 0.732 1.142 0.534 2.477 

Street_Length_500m 0.031 0.020 1.541 0.123 1.032 0.992 1.074 

Street_Length_1000m 0.010 0.006 1.629 0.103 1.010 0.998 1.023 

Distance_nearest_POE 0.011 0.016 0.726 0.468 1.011 0.981 1.043 

InvDist_POE.km 0.197 0.196 1.007 0.314 1.218 0.835 1.814 

InvSqDist_POE.km 0.158 0.106 1.488 0.137 1.171 0.986 1.514 

Traffic_VMT_500m −0.001 0.004 −0.271 0.787 0.999 0.992 1.006 

Traffic_VMT_1000m 0.000 0.001 0.111 0.912 1.000 0.998 1.002 

* All significant correlations are expressed in bold. 

The LUR model included the five traffic-related variables within the 500-m impact zone in a multivariate regression 

model. The most significant predictor in the LUR models of MetS risk factors was the inverse squared distance to 

the nearest POE (see Table 19). The increase in the inverse of the distance squared to the POE, implying a decrease 

in the distance to the POE, was significantly associated with increases in waist circumference (β1 = 1.216, p-value = 

0.037; β1 = 2.116, p-value = 0.026 for female), total cholesterol (β1 = 3.689, p-value = 0.019), TG (β1 = 15.063, 

p-value = 0.001), and fasting glucose (β1 = 9.805, p-value < 0.001). 

Table 19. Summary and Parameter Estimates of Multivariate Regression Models for Continuous MetS Risk 
Factors (N=662) 

Y Traffic Variable Estimate Std. Error t value Pr(>|t|) 

BMI (Intercept) 30.579 0.258 118.571 0.000 

Distance_nearest_Majart 2.682 1.318 2.035 0.042* 

Street_Length_500m 0.082 0.087 0.941 0.347 

Distance_nearest_POE 0.041 0.057 0.727 0.468 

InvSqDist_POE.km 0.492 0.266 1.847 0.065 

Traffic_VMT_500m −0.008 0.014 −0.558 0.577 

Waist (Intercept) 95.510 0.563 169.567 0.000 

Distance_nearest_Majart 4.409 2.883 1.529 0.127 

Street_Length_500m 0.223 0.190 1.170 0.243 

Distance_nearest_POE 0.144 0.124 1.166 0.244 

InvSqDist_POE.km 1.216 0.582 2.087 0.037* 

Traffic_VMT_500m 0.005 0.030 0.162 0.872 

● Waist (female, 
N=559) 

(Intercept) 94.806 0.603 157.111 0.000 

Distance_nearest_Majart 2.131 3.290 0.648 0.518 

Street_Length_500m 0.256 0.212 1.211 0.227 

Distance_nearest_POE 0.191 0.135 1.410 0.159 

InvSqDist_POE.km 2.116 0.948 2.233 0.026* 

Traffic_VMT_500m −0.004 0.031 −0.117 0.907 
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Y Traffic Variable Estimate Std. Error t value Pr(>|t|) 

● Waist (male, 
N=103) 

(Intercept) 99.403 1.502 66.195 0.000 

Distance_nearest_Majart 10.719 6.031 1.777 0.079 

Street_Length_500m −0.326 0.471 −0.692 0.491 

Distance_nearest_POE −0.087 0.318 −0.275 0.784 

InvSqDist_POE.km 0.775 0.815 0.950 0.344 

Traffic_VMT_500m 0.070 0.091 0.765 0.446 

SBP (Intercept) 127.671 0.816 156.374 0.000 

Distance_nearest_Majart 3.606 4.172 0.864 0.388 

Street_Length_500m −0.126 0.276 −0.457 0.648 

Distance_nearest_POE 0.157 0.178 0.883 0.378 

InvSqDist_POE.km 1.391 0.836 1.664 0.097 

Traffic_VMT_500m 0.052 0.043 1.208 0.228 

● SBP (<130, 
N=377) 

(Intercept) 114.051 0.549 207.899 0.000 

Distance_nearest_Majart 2.820 2.841 0.993 0.322 

Street_Length_500m −0.302 0.204 −1.479 0.140 

Distance_nearest_POE 0.212 0.125 1.692 0.092 

InvSqDist_POE.km 2.108 1.385 1.522 0.129 

Traffic_VMT_500m 0.030 0.036 0.848 0.397 

● SBP (≥130, 
N=263) 

(Intercept) 147.381 0.910 162.039 0.000 

Distance_nearest_Majart 7.348 4.596 1.599 0.111 

Street_Length_500m −0.345 0.309 −1.118 0.265 

Distance_nearest_POE −0.080 0.198 −0.404 0.687 

InvSqDist_POE.km 0.310 0.645 0.481 0.631 

Traffic_VMT_500m 0.032 0.039 0.805 0.422 

DBP (Intercept) 76.136 0.449 169.455 0.000 

Distance_nearest_Majart 0.364 2.296 0.159 0.874 

Street_Length_500m −0.057 0.152 −0.378 0.706 

Distance_nearest_POE 0.198 0.098 2.026 0.043* 

InvSqDist_POE.km 0.741 0.460 1.611 0.108 

Traffic_VMT_500m 0.032 0.024 1.356 0.176 

● DBP (<85, 
N=509) 

(Intercept) 71.994 0.350 205.512 0.000 

Distance_nearest_Majart −3.725 1.943 −1.917 0.056 

Street_Length_500m −0.250 0.122 −2.053 0.041* 

Distance_nearest_POE 0.092 0.079 1.162 0.246 

InvSqDist_POE.km 0.651 0.524 1.241 0.215 

Traffic_VMT_500m 0.027 0.020 1.356 0.176 

● DBP (≥85, 
N=131) 

(Intercept) 92.411 0.668 138.441 0.000 

Distance_nearest_Majart 1.873 2.723 0.688 0.493 

Street_Length_500m 0.365 0.230 1.589 0.115 

Distance_nearest_POE 0.074 0.135 0.547 0.585 

InvSqDist_POE.km −0.375 0.403 −0.930 0.354 

Traffic_VMT_500m 0.012 0.028 0.415 0.679 

PBP (Intercept) 51.535 0.575 89.652 0.000 

Distance_nearest_Majart 3.242 2.938 1.104 0.270 

Street_Length_500m −0.069 0.194 −0.353 0.724 

Distance_nearest_POE −0.041 0.125 −0.329 0.742 

InvSqDist_POE.km 0.650 0.589 1.104 0.270 

Traffic_VMT_500m 0.020 0.030 0.656 0.512 
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Y Traffic Variable Estimate Std. Error t value Pr(>|t|) 

TC (Intercept) 190.077 1.516 125.367 0.000 

Distance_nearest_Majart 9.553 8.363 1.142 0.254 

Street_Length_500m −0.834 0.514 −1.622 0.105 

Distance_nearest_POE −0.222 0.332 −0.670 0.503 

InvSqDist_POE.km 3.689 1.566 2.356 0.019* 

Traffic_VMT_500m 0.037 0.080 0.465 0.642 

TG (Intercept) 186.352 4.443 41.944 0.000 

Distance_nearest_Majart 63.169 24.507 2.578 0.010* 

Street_Length_500m 2.310 1.506 1.534 0.126 

Distance_nearest_POE 1.491 0.972 1.535 0.125 

InvSqDist_POE.km 15.063 4.589 3.282 0.001* 

Traffic_VMT_500m −0.243 0.235 −1.035 0.301 

log.TG (Intercept) 5.068 0.022 232.742 0.000 

Distance_nearest_Majart 0.328 0.120 2.729 0.007* 

Street_Length_500m 0.013 0.007 1.789 0.074 

Distance_nearest_POE 0.008 0.005 1.595 0.111 

InvSqDist_POE.km 0.054 0.022 2.396 0.017* 

Traffic_VMT_500m −0.001 0.001 −1.056 0.291 

HDL (Intercept) 49.662 0.572 86.764 0.000 

Distance_nearest_Majart −3.169 3.152 −1.005 0.315 

Street_Length_500m −0.157 0.195 −0.807 0.420 

Distance_nearest_POE −0.137 0.126 −1.091 0.276 

InvSqDist_POE.km −0.414 0.588 −0.705 0.481 

Traffic_VMT_500m −0.012 0.030 −0.404 0.686 

LDL (Intercept) 106.017 1.308 81.072 0.000 

Distance_nearest_Majart 2.814 7.747 0.363 0.717 

Street_Length_500m −0.501 0.457 −1.096 0.274 

Distance_nearest_POE −0.451 0.290 −1.557 0.120 

InvSqDist_POE.km −2.582 2.113 −1.222 0.222 

Traffic_VMT_500m 0.091 0.069 1.329 0.184 

TC/HDL (Intercept) 4.171 0.068 61.072 0.000 

Distance_nearest_Majart 0.212 0.374 0.567 0.571 

Street_Length_500m −0.010 0.023 −0.428 0.668 

Distance_nearest_POE 0.007 0.015 0.459 0.646 

InvSqDist_POE.km 0.134 0.070 1.929 0.054 

Traffic_VMT_500m 0.002 0.004 0.559 0.576 

log.TC/HDL (Intercept) 1.366 0.014 100.898 0.000 

Distance_nearest_Majart 0.096 0.074 1.298 0.195 

Street_Length_500m 0.000 0.005 −0.046 0.963 

Distance_nearest_POE 0.002 0.003 0.538 0.591 

InvSqDist_POE.km 0.023 0.014 1.634 0.103 

Traffic_VMT_500m 0.000 0.001 0.616 0.538 

bc.TC/HDL (Intercept) 0.976 0.007 145.985 0.000 

Distance_nearest_Majart 0.057 0.037 1.551 0.121 

Street_Length_500m 0.000 0.002 0.066 0.948 

Distance_nearest_POE 0.001 0.001 0.448 0.654 

InvSqDist_POE.km 0.009 0.007 1.358 0.175 

Traffic_VMT_500m 0.000 0.000 0.583 0.560 
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Y Traffic Variable Estimate Std. Error t value Pr(>|t|) 

FBG (Intercept) 108.802 1.789 60.832 0.000 

Distance_nearest_Majart −3.955 9.866 −0.401 0.689 

Street_Length_500m −0.199 0.606 −0.328 0.743 

Distance_nearest_POE 0.230 0.391 0.588 0.556 

InvSqDist_POE.km 9.805 1.847 5.307 0.000* 

Traffic_VMT_500m −0.030 0.095 −0.322 0.748 

log.FBG (Intercept) 4.635 0.011 405.152 0.000 

Distance_nearest_Majart −0.013 0.063 −0.201 0.841 

Street_Length_500m −0.001 0.004 −0.290 0.772 

Distance_nearest_POE −0.001 0.003 −0.200 0.842 

InvSqDist_POE.km 0.046 0.012 3.891 0.000* 

Traffic_VMT_500m 0.000 0.001 −0.364 0.716 

bc.FBG (Intercept) 0.500 0.000 652753 0.000 

Distance_nearest_Majart 0.000 0.000 0.061 0.951 

Street_Length_500m 0.000 0.000 −0.082 0.935 

Distance_nearest_POE 0.000 0.000 −0.884 0.377 

InvSqDist_POE.km 0.000 0.000 2.005 0.045* 

Traffic_VMT_500m 0.000 0.000 −0.383 0.702 

* All significant predictors and corresponding p-values are expressed in bold. 

In logistic regression modeling, researchers also found that increasing the inverse distance squared to the POE was 

associated with an increased likelihood of high TC (odds ratio = 1.221; p-value = 0.055) (see Table 20). The LUR 

model was found to have a weak correlation between MetS classification and street length within the 500-m zone, 

which implies more likelihood of having MetS with increased street length around the residential area (odds ratio = 

1.050, p-value = 0.082). However, as shown in the previous univariate models, the larger impact zone within the 

1,000-m distance may be more appropriate than the 500-m zone when modeling the binary risk factors of MetS. 

Table 20. Summary and Parameter Estimates of Multivariate Logistic Regression Model for Binary MetS Factors 
(N=662) 

Y Traffic Variable Estimate 
Std. 

Error 
z value p-value 

Odds 
Ratio 

Lower 
95% CI 

Upper 
95% CI 

HighWaist (Intercept) 0.534 0.081 6.563 0.000 1.706 1.456 2.003 

Distance_nearest_Majart −0.193 0.414 −0.467 0.641 0.824 0.367 1.900 

Street_Length_500m 0.021 0.028 0.745 0.456 1.021 0.967 1.078 

Distance_nearest_POE 0.026 0.018 1.416 0.157 1.026 0.990 1.064 

InvSqDist_POE 0.012 0.087 0.134 0.893 1.012 0.859 1.238 

Traffic_VMT_500m −0.002 0.004 −0.359 0.719 0.998 0.990 1.007 

HighBP (Intercept) −0.280 0.081 −3.478 0.001 0.756 0.645 0.885 

Distance_nearest_Majart −0.253 0.418 −0.604 0.546 0.777 0.332 1.743 

Street_Length_500m 0.014 0.027 0.497 0.619 1.014 0.960 1.070 

Distance_nearest_POE 0.021 0.018 1.224 0.221 1.022 0.987 1.058 

InvSqDist_POE 0.138 0.108 1.285 0.199 1.148 0.960 1.504 

Traffic_VMT_500m 0.003 0.004 0.604 0.546 1.003 0.994 1.011 
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Y Traffic Variable Estimate 
Std. 

Error 
z value p-value 

Odds 
Ratio 

Lower 
95% CI 

Upper 
95% CI 

HighTC (Intercept) −0.518 0.082 −6.337 0.000 0.596 0.507 0.699 

Distance_nearest_Majart 0.358 0.443 0.809 0.419 1.430 0.599 3.457 

Street_Length_500m −0.057 0.028 −2.034 0.042* 0.944 0.893 0.998 

Distance_nearest_POE −0.001 0.018 −0.033 0.974 0.999 0.965 1.035 

InvSqDist_POE 0.200 0.104 1.916 0.055 1.221 1.023 1.577 

Traffic_VMT_500m 0.001 0.004 0.306 0.760 1.001 0.993 1.010 

HighTG (Intercept) 0.237 0.081 2.933 0.003 1.267 1.082 1.485 

Distance_nearest_Majart 1.296 0.499 2.598 0.009* 3.653 1.416 9.979 

Street_Length_500m 0.044 0.028 1.553 0.121 1.045 0.988 1.104 

Distance_nearest_POE 0.033 0.018 1.829 0.067 1.033 0.998 1.071 

InvSqDist_POE 0.204 0.150 1.362 0.173 1.226 0.982 1.785 

Traffic_VMT_500m −0.004 0.004 −0.956 0.339 0.996 0.988 1.004 

LowHDL (Intercept) 0.046 0.079 0.584 0.559 1.047 0.897 1.224 

Distance_nearest_Majart 0.332 0.443 0.749 0.454 1.393 0.590 3.391 

Street_Length_500m 0.033 0.027 1.218 0.223 1.034 0.980 1.090 

Distance_nearest_POE 0.020 0.017 1.132 0.258 1.020 0.986 1.056 

InvSqDist_POE 0.049 0.088 0.556 0.578 1.050 0.891 1.293 

Traffic_VMT_500m 0.001 0.004 0.138 0.891 1.001 0.992 1.009 

HighFBG (Intercept) −0.603 0.082 −7.328 0.000 0.547 0.465 0.642 

Distance_nearest_Majart 0.431 0.446 0.966 0.334 1.539 0.636 3.727 

Street_Length_500m −0.007 0.028 −0.255 0.799 0.993 0.940 1.049 

Distance_nearest_POE −0.016 0.018 −0.858 0.391 0.985 0.950 1.020 

InvSqDist_POE 0.088 0.084 1.045 0.296 1.092 0.927 1.321 

Traffic_VMT_500m −0.002 0.004 −0.416 0.677 0.998 0.989 1.007 

MetS (Intercept) 0.092 0.080 1.150 0.250 1.096 0.937 1.283 

Distance_nearest_Majart 0.383 0.449 0.853 0.394 1.466 0.617 3.623 

Street_Length_500m 0.048 0.028 1.739 0.082 1.050 0.994 1.109 

Distance_nearest_POE 0.029 0.018 1.614 0.106 1.029 0.994 1.066 

InvSqDist_POE 0.142 0.123 1.150 0.250 1.152 0.949 1.583 

Traffic_VMT_500m −0.004 0.004 −0.980 0.327 0.996 0.988 1.004 

* All significant predictors and corresponding p-values are expressed in bold. 

Cardiovascular Associations Using Five-Year Data  
Table 21 summarizes descriptive statistics for cardiovascular risk measurements (MetS) using the five-year dataset 

(N=4.959). Waist circumference ranged from 56 to 154 cm with an average of 95 cm. Blood pressure (SBP/DBP) 

measurements ranged from 71/35 to 232/151 mmHg with an average of 123/76 mmHg. TG levels ranged from 45 

to 650 mg/dL with an average of 186 mg/dL. HDL cholesterol ranged from 15 to 100 mg/dL with an average of 

48.5 mg/dL. Glucose levels ranged from 50 to 500 mg/dL with an average of 113 mg/dL. Other variables of interest 

of cardiovascular risk that are not a component of MetS but could potentially offer more information related to 

cardiovascular risk included BMI, PBP, TC, and LDL cholesterol.  
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Table 21. Descriptive Statistics for MetS Risk Factors (N=4,959) 

Characteristic Min. Q1 Median Mean Q3 Max. SD IQR NA 

BMI (kg/m2) 15.318 25.748 29.149 29.942 33.218 67.650 6.136 7.470 1,538 

Waist (cm) 56.000 84.000 93.000 93.953 103.000 154.000 14.559 19.000 1038 

SBP (mmHg) 71.000 110.000 121.000 123.183 134.000 232.000 19.266 24.000 776 

DBP (mmHg) 35.000 69.000 75.000 76.400 83.000 151.000 11.438 14.000 776 

PBP (mmHg) 3.000 37.000 45.000 46.783 54.000 133.000 14.103 17.000 776 

TC (mg/dL) 100.000 160.000 186.000 189.646 214.000 500.010 41.868 54.000 1,349 

TG (mg/dL) 44.900 110.000 164.000 186.642 233.000 650.100 108.203 123.000 1,324 

HDL (mg/dL) 14.900 38.000 47.000 48.555 57.000 100.100 15.319 19.000 1,365 

LDL (mg/dL) 14.000 81.000 102.000 105.278 127.000 314.000 34.746 46.000 1,621 

TC/HDL 1.400 3.100 3.900 4.254 5.000 15.500 1.647 1.900 1,441 

FBG (mg/dL) 49.900 90.000 99.000 113.795 116.000 500.010 48.971 26.000 1,336 

As Table 22 shows, linear relationships were found between traffic variables and a few MetS risk factors. Waist 

measurement significantly correlated with the street length within the 500-m area (ρ = 0.045, β1 = 0.155), inverse 

of the distance to the nearest POE (ρ = 0.046, β1 = 1.426), and inverse squared distance (ρ = 0.033, β1 = 0.270). BP 

monitoring showed that traffic variables were more associated with PBP, rather than SBP or DBP. The PBP 

increases related to an increase in street length within the 500- and 1,000-m zones (ρ = 0.035, β1 = 0.115; ρ = 

0.050, β1 = 0.046, respectively), decrease in the distance to the nearest POE (ρ = −0.059, β1 = −0.118), rise in the 

inverse of the distance to the POE (ρ = 0.040, β1 = 1.227), and increase in traffic amount within 500 and 1,000 m (ρ 

= 0.051, β1 = 0.026; ρ = 0.055, β1 = 0.008, respectively). Log-transformed and box-cox transformed glucose levels 

showed similar correlation results. 

Log-transformed TG was significantly associated with the street length within the 500-m zone (β1 = 0.005, p-value = 

0.036). The fasting glucose showed significant relationships with the POE-related distance variables: negative 

association with the distance to the nearest POE (ρ = −0.036, β1 = −0.257), and positive associations with the 

inverse of the distance (ρ = 0.064, β1 = 6.723) and the inverse of the distance squared (ρ = 0.051, β1 =1.380).  

Table 23 summarizes the frequency of the five MetS risk factors (binary outcomes) and the MetS classification. 

Researchers also included the classification of high cholesterol. The univariate associations between the binary 

classification of MetS risk factors and traffic variables were examined using logistic regression modeling (see 

Table 24). The risk of low HDL cholesterol was found to be higher as the street length within the impact zone (odds 

ratio = 1.023, p-value = 0.006 for the 500-m zone) and the inverse distance to the POE increase (odds ratio = 1.212, 

p-value = 0.012) get larger. The effect of street length is more substantial for the smaller region, that is, the 500-m 

zone, than for the 1,000-m zone. The street length within the 500-m impact zone was also an important factor 

correlated with a higher risk of MetS (odds ratio = 1.020, 95% CI = [1.003, 1.037]). Increase in the inverse distance 

to the nearest POE, implying a decrease in the distance to the POE, related to the higher risk in MetS (β1 = 0.192, 

p-value = 0.012). 
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Table 22. Correlation Analysis (N=4,959) 

Characteristic 
Distance_ 
nearest_ 
Majart 

Street_ 
Length_ 

500m 

Street_ 
Length_ 
1000m 

Distance_ 
nearest_ 

POE 

InvDist_ 
POE 

InvSqDist 
_POE 

Traffic_ 
VMT_ 
500m 

Traffic_ 
VMT_ 
1000m 

BMI 0.022 0.005 −0.010 0.039* −0.002 0.000 −0.043* −0.042* 

Waist −0.001 0.045* 0.031 −0.002 0.046* 0.033* 0.002 0.006 

• Female −0.004 0.059* 0.046* −0.009 0.054* 0.024 0.013 0.017 

• Male 0.045 −0.018 −0.054 0.065 −0.001 0.028 −0.050 −0.062 

SBP 0.012 0.008 0.018 −0.031* 0.018 0.013 0.028 0.021 

• SBP < 130 0.041* −0.021 −0.015 0.029 −0.011 0.012 0.006 −0.007 

• SBP ≥ 130 0.031 −0.001 −0.001 −0.022 0.033 0.031 0.041 0.020 

DBP 0.022 −0.029 −0.032* 0.020 −0.020 −0.006 −0.016 −0.033* 

• DBP < 85 0.021 −0.025 −0.025 0.027 −0.040* −0.022 0.010 −0.020 

• DBP ≥ 85 −0.033 0.030 0.009 0.008 0.013 −0.010 −0.004 −0.018 

PBP −0.002 0.035* 0.050* −0.059* 0.040* 0.023 0.051* 0.055* 

TC 0.036* −0.026 −0.040* 0.022 −0.015 0.002 −0.012 −0.031 

TG 0.012 0.028 0.006 −0.010 0.023 0.017 0.014 −0.019 

log.TG 0.013 0.035* 0.009 −0.007 0.025 0.019 0.011 −0.027 

HDL 0.016 −0.046* −0.046* 0.001 −0.041* −0.027 −0.025 −0.021 

LDL 0.023 −0.026 −0.032 0.026 −0.024 −0.007 −0.011 −0.020 

TC/HDL 0.013 0.011 0.000 0.012 0.013 0.018 0.021 −0.003 

log.TC/HDL 0.011 0.019 0.009 0.010 0.020 0.024 0.021 −0.003 

bc.TC/HDL1 0.010 0.021 0.013 0.010 0.022 0.025 0.020 −0.004 

FBG 0.003 0.032 0.021 −0.036* 0.064* 0.051* 0.018 0.006 

log.FBG 0.001 0.037* 0.023 −0.035* 0.066* 0.049* 0.017 0.004 

bc.FBG2 0.001 0.043* 0.025 −0.031 0.061* 0.040* 0.016 0.001 

* All significant correlations are expressed in bold. 

1. Box-cox transformation: bc.TC/HDL = [(TC/HDL)^(−0.5)−1]/(−0.5). 

2. Box-cox transformation: bc.FBG = [FBG^(−2)−1]/(−2).  

Table 23. Summary of MetS Risk Factors (N=4,959) 

Variable Value Frequency Percent 

HighWaist 1 2,307 46.5 

0 1,603 32.3 

NA 1,049 21.2 

HighBP 0 2,561 51.6 

1 1,622 32.7 

NA 776 15.6 

HighTC 0 2,247 45.3 

1 1,363 27.5 

NA 1,349 27.2 

HighTG 1 2,047 41.3 

0 1,588 32.0 

NA 1,324 26.7 

LowHDL 1 1,835 37.0 

0 1,750 35.3 

NA 1,374 27.7 
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Variable Value Frequency Percent 

HighFBG 0 1,827 36.8 

1 1,795 36.2 

NA 1,337 27.0 

MetS 1 1,851 37.3 

0 1,626 32.8 

NA 1,482 29.9 

Table 24. Univariate Associations between MetS Risk Factors and MetS Classification and Traffic Variables 
(N=4,959) 

Y Traffic Variable Estimate 
Std. 

Error 
z value Pr(>|z|) 

Odds 
Ratio 

Lower 
95% CI 

Upper 
95% CI 

HighWaist Distance_nearest_Majart −0.012 0.095 −0.129 0.898 0.988 0.820 1.192 

Street_Length_500m 0.010 0.008 1.276 0.202 1.010 0.995 1.026 

Street_Length_1000m 0.000 0.002 −0.065 0.948 1.000 0.996 1.004 

Distance_nearest_POE 0.009 0.005 1.834 0.067 1.009 0.999 1.018 

InvDist_POE.km 0.014 0.070 0.204 0.838 1.014 0.885 1.166 

InvSqDist_POE.km 0.000 0.019 −0.024 0.981 1.000 0.964 1.038 

Traffic_VMT_500m 0.000 0.001 −0.319 0.750 1.000 0.997 1.002 

Traffic_VMT_1000m 0.000 0.000 −1.370 0.171 1.000 0.999 1.000 

HighBP Distance_nearest_Majart 0.005 0.093 0.051 0.959 1.005 0.836 1.205 

Street_Length_500m 0.002 0.008 0.225 0.822 1.002 0.987 1.017 

Street_Length_1000m 0.002 0.002 0.733 0.463 1.002 0.997 1.006 

Distance_nearest_POE −0.008 0.005 −1.706 0.088 0.992 0.983 1.001 

InvDist_POE.km 0.038 0.068 0.550 0.583 1.038 0.907 1.186 

InvSqDist_POE.km −0.001 0.019 −0.027 0.978 0.999 0.962 1.036 

Traffic_VMT_500m 0.000 0.001 0.380 0.704 1.000 0.998 1.003 

Traffic_VMT_1000m 0.000 0.000 0.341 0.733 1.000 0.999 1.001 

HighTC Distance_nearest_Majart 0.146 0.102 1.429 0.153 1.157 0.946 1.412 

Street_Length_500m −0.012 0.008 −1.413 0.158 0.988 0.972 1.005 

Street_Length_1000m −0.004 0.002 −1.516 0.130 0.996 0.992 1.001 

Distance_nearest_POE 0.006 0.005 1.223 0.221 1.006 0.996 1.016 

InvDist_POE.km 0.011 0.075 0.148 0.882 1.011 0.871 1.169 

InvSqDist_POE.km 0.019 0.019 0.998 0.318 1.019 0.981 1.058 

Traffic_VMT_500m −0.001 0.001 −0.532 0.595 0.999 0.997 1.002 

Traffic_VMT_1000m 0.000 0.000 −1.035 0.301 1.000 0.999 1.000 

HighTG Distance_nearest_Majart 0.090 0.101 0.894 0.371 1.094 0.899 1.336 

Street_Length_500m 0.011 0.008 1.297 0.195 1.011 0.995 1.027 

Street_Length_1000m 0.001 0.002 0.621 0.534 1.001 0.997 1.006 

Distance_nearest_POE 0.002 0.005 0.467 0.640 1.002 0.993 1.012 

InvDist_POE.km 0.034 0.073 0.468 0.640 1.035 0.898 1.197 

InvSqDist_POE.km 0.004 0.019 0.216 0.829 1.004 0.968 1.044 

Traffic_VMT_500m 0.000 0.001 −0.104 0.917 1.000 0.997 1.002 

Traffic_VMT_1000m −0.001 0.000 −1.612 0.107 0.999 0.999 1.000 
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Y Traffic Variable Estimate 
Std. 

Error 
z value Pr(>|z|) 

Odds 
Ratio 

Lower 
95% CI 

Upper 
95% CI 

LowHDL Distance_nearest_Majart 0.002 0.100 0.022 0.982 1.002 0.823 1.221 

Street_Length_500m 0.023 0.008 2.756 0.006* 1.023 1.007 1.039 

Street_Length_1000m 0.006 0.002 2.696 0.007* 1.006 1.002 1.011 

Distance_nearest_POE 0.001 0.005 0.244 0.808 1.001 0.992 1.011 

InvDist_POE.km 0.192 0.076 2.523 0.012* 1.212 1.047 1.413 

InvSqDist_POE.km 0.037 0.021 1.787 0.074 1.038 0.999 1.085 

Traffic_VMT_500m 0.002 0.001 1.248 0.212 1.002 0.999 1.004 

Traffic_VMT_1000m 0.000 0.000 1.152 0.249 1.000 1.000 1.001 

HighFBG Distance_nearest_Majart 0.033 0.100 0.329 0.742 1.033 0.849 1.257 

Street_Length_500m 0.004 0.008 0.478 0.633 1.004 0.988 1.020 

Street_Length_1000m −0.001 0.002 −0.622 0.534 0.999 0.994 1.003 

Distance_nearest_POE 0.004 0.005 0.866 0.387 1.004 0.995 1.014 

InvDist_POE.km 0.136 0.074 1.843 0.065 1.145 0.993 1.327 

InvSqDist_POE.km 0.025 0.020 1.285 0.199 1.025 0.988 1.068 

Traffic_VMT_500m 0.000 0.001 −0.247 0.805 1.000 0.997 1.002 

Traffic_VMT_1000m −0.001 0.000 −1.586 0.113 0.999 0.999 1.000 

MetS Distance_nearest_Majart −0.047 0.102 −0.460 0.645 0.954 0.781 1.166 

Street_Length_500m 0.020 0.008 2.368 0.018* 1.020 1.003 1.037 

Street_Length_1000m 0.004 0.002 1.598 0.110 1.004 0.999 1.008 

Distance_nearest_POE 0.002 0.005 0.355 0.722 1.002 0.992 1.012 

InvDist_POE.km 0.150 0.076 1.964 0.050* 1.162 1.003 1.355 

InvSqDist_POE.km 0.016 0.019 0.802 0.423 1.016 0.979 1.057 

Traffic_VMT_500m 0.000 0.001 −0.052 0.959 1.000 0.997 1.002 

Traffic_VMT_1000m 0.000 0.000 −0.802 0.422 1.000 0.999 1.000 

* All significant correlations are expressed in bold. 

Five traffic variables (i.e., distance to the nearest major arterial road, street length within the 500-m impact zone, 

distance to the nearest POE, inverse of the distance to the POE squared, and traffic VMT within the 500-m zone) 

were included in LUR modeling for multivariate analyses of the five-year data. As Table 25 shows, the most 

significant predictor in the LUR models was the total length of the street within a 500-m radius. The increase in the 

street length associated with increasing MetS factors, in particular BMI (β1 = 0.110, p-value = 0.002), waist 

circumference (β1 = 0.294, p-value < 0.001), log-transformed TG (β1 = 0.007, p-value = 0.025), and box-cox 

transformed fasting glucose (β1 = 2.218e-07, p-value = 0.049). However, the fasting glucose and log-transformed 

glucose showed positive relationships with the inverse squared distance to the POE (β1 = 1.156, p-value = 0.015; β1 

= 0.007, p-value = 0.023, respectively). In the modeling of PBP, the increase in PBP was associated with an increase 

in the amount of traffic within a 500-m radius (β1 = 0.021, p-value = 0.048) and the proximity to the nearest POE 

(β1 = −0.095, p-value = 0.013). Researchers also found the effect of traffic volume within the 500-m zone on the 

DBP measurement for the participants whose DBP was less than 85 mmHg. 

Logistic regression models, including the five traffic predictors, also showed the significance of the length of the 

street within the 500-m impact zone (see Table 26). As the total length of the street increases, the risks of a large 

waist circumference (β1 = 0.034, p-value = 0.002), high TG (β1 = 0.024, p-value = 0.034), and low HDL cholesterol 

(β1 = 0.032, p-value = 0.004) were observed. The significance of the street length variable in predicting three MetS 

risk components may have influenced the prediction of MetS classification. The increasing likelihood of MetS was 

related to the increased street length within the impact zone (β1 = 0.038, p-value = 0.001, odds ratio = 1.039 

[1.016, 1.062]). 
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Table 25. Summary and Parameter Estimates of Multivariate Regression Models for Continuous MetS Risk 
Factors (N=4,959) 

Y Traffic Variable Estimate 
Std. 

Error 
t value Pr(>|t|) 

BMI (Intercept) 29.961 0.108 277.530 0.000 

Distance_nearest_Majart 0.562 0.394 1.426 0.154 

Street_Length_500m 0.110 0.035 3.122 0.002* 

Distance_nearest_POE 0.044 0.018 2.382 0.017* 

InvSqDist_POE.km 0.002 0.061 0.040 0.968 

Traffic_VMT_500m −0.013 0.005 −2.647 0.008* 

Waist (Intercept) 93.875 0.241 389.725 0.000 

Distance_nearest_Majart 0.462 0.878 0.526 0.599 

Street_Length_500m 0.294 0.077 3.793 0.000 

Distance_nearest_POE 0.054 0.041 1.329 0.184 

InvSqDist_POE.km 0.176 0.140 1.255 0.210 

Traffic_VMT_500m −0.020 0.011 −1.801 0.072 

● Waist (female, 
N=3941) 

(Intercept) 92.889 0.267 347.822 0.000 

Distance_nearest_Majart 0.322 0.953 0.338 0.736 

Street_Length_500m 0.351 0.086 4.097 0.000* 

Distance_nearest_POE 0.049 0.045 1.099 0.272 

InvSqDist_POE.km 0.053 0.196 0.269 0.788 

Traffic_VMT_500m −0.019 0.012 −1.548 0.122 

● Waist (male, 
N=954) 

(Intercept) 97.755 0.536 182.392 0.000 

Distance_nearest_Majart 2.616 2.139 1.223 0.222 

Street_Length_500m 0.190 0.178 1.065 0.287 

Distance_nearest_POE 0.173 0.098 1.762 0.079 

InvSqDist_POE.km 0.231 0.202 1.145 0.253 

Traffic_VMT_500m −0.022 0.025 −0.886 0.376 

SBP (Intercept) 123.202 0.308 399.361 0.000 

Distance_nearest_Majart 1.804 1.122 1.608 0.108 

Street_Length_500m −0.054 0.099 −0.542 0.588 

Distance_nearest_POE −0.084 0.052 −1.610 0.107 

InvSqDist_POE.km 0.110 0.183 0.600 0.549 

Traffic_VMT_500m 0.021 0.014 1.518 0.129 

● SBP (<130, 
N=2801) 

(Intercept) 112.606 0.207 542.694 0.000 

Distance_nearest_Majart 1.764 0.754 2.340 0.019* 

Street_Length_500m −0.027 0.066 −0.402 0.688 

Distance_nearest_POE 0.044 0.034 1.285 0.199 

InvSqDist_POE.km 0.131 0.119 1.094 0.274 

Traffic_VMT_500m 0.015 0.010 1.509 0.131 

● SBP (≥130, 
N=1382) 

(Intercept) 144.678 0.396 365.337 0.000 

Distance_nearest_Majart 1.123 1.449 0.775 0.438 

Street_Length_500m −0.143 0.130 −1.102 0.271 

Distance_nearest_POE −0.069 0.071 −0.979 0.328 

InvSqDist_POE.km 0.294 0.253 1.162 0.246 

Traffic_VMT_500m 0.029 0.018 1.648 0.100 
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Y Traffic Variable Estimate 
Std. 

Error 
t value Pr(>|t|) 

DBP (Intercept) 76.386 0.183 417.888 0.000 

Distance_nearest_Majart 0.445 0.665 0.669 0.503 

Street_Length_500m −0.053 0.059 −0.897 0.370 

Distance_nearest_POE 0.011 0.031 0.360 0.719 

InvSqDist_POE.km 0.013 0.108 0.120 0.905 

Traffic_VMT_500m 0.001 0.008 0.108 0.914 

● DBP (<85, 
N=3246) 

(Intercept) 71.840 0.140 514.876 0.000 

Distance_nearest_Majart 0.644 0.516 1.249 0.212 

Street_Length_500m −0.046 0.045 −1.019 0.308 

Distance_nearest_POE 0.030 0.024 1.284 0.199 

InvSqDist_POE.km −0.056 0.085 −0.658 0.511 

Traffic_VMT_500m 0.013 0.006 1.972 0.049* 

● DBP (≥85, 
N=937) 

(Intercept) 92.209 0.247 373.154 0.000 

Distance_nearest_Majart −1.092 0.856 −1.275 0.203 

Street_Length_500m 0.087 0.080 1.077 0.282 

Distance_nearest_POE 0.036 0.042 0.848 0.397 

InvSqDist_POE.km −0.071 0.135 −0.529 0.597 

Traffic_VMT_500m −0.008 0.012 −0.723 0.470 

PBP (Intercept) 46.816 0.227 206.456 0.000 

Distance_nearest_Majart 1.359 0.825 1.648 0.099 

Street_Length_500m −0.001 0.073 −0.014 0.989 

Distance_nearest_POE −0.095 0.038 −2.481 0.013* 

InvSqDist_POE.km 0.097 0.135 0.720 0.472 

Traffic_VMT_500m 0.021 0.010 1.978 0.048* 

TC (Intercept) 189.327 0.720 263.063 0.000 

Distance_nearest_Majart 2.711 2.649 1.023 0.306 

Street_Length_500m −0.195 0.233 −0.837 0.403 

Distance_nearest_POE 0.038 0.123 0.308 0.758 

InvSqDist_POE.km 0.236 0.409 0.578 0.564 

Traffic_VMT_500m 0.012 0.033 0.369 0.712 

TG (Intercept) 187.067 1.867 100.215 0.000 

Distance_nearest_Majart 12.724 6.868 1.853 0.064 

Street_Length_500m 0.901 0.603 1.494 0.135 

Distance_nearest_POE 0.094 0.319 0.295 0.768 

InvSqDist_POE.km 0.730 1.055 0.692 0.489 

Traffic_VMT_500m 0.026 0.085 0.312 0.755 

log.TG (Intercept) 5.078 0.010 528.973 0.000 

Distance_nearest_Majart 0.068 0.035 1.917 0.055 

Street_Length_500m 0.007 0.003 2.236 0.025* 

Distance_nearest_POE 0.001 0.002 0.636 0.525 

InvSqDist_POE.km 0.004 0.005 0.734 0.463 

Traffic_VMT_500m 0.000 0.000 −0.151 0.880 

HDL (Intercept) 48.563 0.263 184.810 0.000 

Distance_nearest_Majart −0.220 0.971 −0.227 0.821 

Street_Length_500m −0.222 0.085 −2.616 0.009* 

Distance_nearest_POE −0.059 0.045 −1.318 0.188 

InvSqDist_POE.km −0.151 0.148 −1.024 0.306 

Traffic_VMT_500m 0.000 0.012 0.002 0.998 
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Y Traffic Variable Estimate 
Std. 

Error 
t value Pr(>|t|) 

LDL (Intercept) 104.895 0.624 168.048 0.000 

Distance_nearest_Majart −0.419 2.311 −0.181 0.856 

Street_Length_500m −0.130 0.202 −0.645 0.519 

Distance_nearest_POE 0.037 0.106 0.346 0.729 

InvSqDist_POE.km −0.025 0.349 −0.073 0.942 

Traffic_VMT_500m 0.000 0.029 0.015 0.988 

TC/HDL (Intercept) 4.247 0.029 147.650 0.000 

Distance_nearest_Majart 0.077 0.106 0.727 0.467 

Street_Length_500m 0.005 0.009 0.492 0.622 

Distance_nearest_POE 0.005 0.005 1.046 0.296 

InvSqDist_POE.km 0.017 0.016 1.065 0.287 

Traffic_VMT_500m 0.002 0.001 1.198 0.231 

log.TC/HDL (Intercept) 1.382 0.006 224.893 0.000 

Distance_nearest_Majart 0.013 0.023 0.586 0.558 

Street_Length_500m 0.002 0.002 0.950 0.342 

Distance_nearest_POE 0.001 0.001 1.143 0.253 

InvSqDist_POE.km 0.004 0.003 1.284 0.199 

Traffic_VMT_500m 0.000 0.000 0.907 0.364 

bc.TC/HDL (Intercept) 0.982 0.003 320.741 0.000 

Distance_nearest_Majart 0.006 0.011 0.530 0.596 

Street_Length_500m 0.001 0.001 1.148 0.251 

Distance_nearest_POE 0.001 0.001 1.185 0.236 

InvSqDist_POE.km 0.002 0.002 1.330 0.184 

Traffic_VMT_500m 0.000 0.000 0.751 0.453 

FBG (Intercept) 113.656 0.841 135.214 0.000 

Distance_nearest_Majart 3.365 3.096 1.087 0.277 

Street_Length_500m 0.261 0.271 0.962 0.336 

Distance_nearest_POE −0.200 0.144 −1.395 0.163 

InvSqDist_POE.km 1.156 0.474 2.438 0.015* 

Traffic_VMT_500m −0.005 0.038 −0.143 0.886 

log.FBG (Intercept) 4.678 0.005 908.585 0.000 

Distance_nearest_Majart 0.019 0.019 1.027 0.305 

Street_Length_500m 0.002 0.002 1.395 0.163 

Distance_nearest_POE −0.001 0.001 −1.161 0.246 

InvSqDist_POE.km 0.007 0.003 2.279 0.023* 

Traffic_VMT_500m 0.000 0.000 −0.368 0.713 

bc.FBG (Intercept) 0.500 0.000 1436139 0.000 

Distance_nearest_Majart 0.000 0.000 1.086 0.278 

Street_Length_500m 0.000 0.000 1.973 0.049* 

Distance_nearest_POE 0.000 0.000 −0.839 0.401 

InvSqDist_POE.km 0.000 0.000 1.641 0.101 

Traffic_VMT_500m 0.000 0.000 −0.596 0.551 

*All significant predictors and corresponding p-values are expressed in bold. 
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Table 26. Summary and Parameter Estimates of Multivariate Logistic Regression Model for Binary MetS Factors 
(N=4,959) 

Y Traffic Variable Estimate 
Std. 

Error 
z value Pr(>|z|) 

Odds 
Ratio 

Lower 
95% CI 

Upper 
95% CI 

HighWaist (Intercept) 0.359 0.034 10.612 0.000 1.431 1.340 1.529 

Distance_nearest_Majart −0.037 0.123 −0.302 0.763 0.964 0.758 1.227 

Street_Length_500m 0.034 0.011 3.157 0.002* 1.035 1.013 1.058 

Distance_nearest_POE 0.016 0.006 2.677 0.007* 1.016 1.004 1.027 

InvSqDist_POE.km −0.006 0.019 −0.291 0.771 0.994 0.957 1.034 

Traffic_VMT_500m −0.002 0.002 −1.326 0.185 0.998 0.995 1.001 

HighBP (Intercept) −0.459 0.033 −13.944 0.000 0.632 0.592 0.674 

Distance_nearest_Majart 0.106 0.119 0.886 0.376 1.112 0.879 1.403 

Street_Length_500m 0.000 0.011 −0.002 0.998 1.000 0.979 1.021 

Distance_nearest_POE −0.010 0.006 −1.801 0.072 0.990 0.979 1.001 

InvSqDist_POE.km −0.006 0.020 −0.311 0.756 0.994 0.954 1.032 

Traffic_VMT_500m 0.000 0.002 −0.133 0.894 1.000 0.997 1.003 

HighTC (Intercept) −0.515 0.036 −14.438 0.000 0.598 0.557 0.641 

Distance_nearest_Majart −0.009 0.131 −0.066 0.947 0.991 0.766 1.280 

Street_Length_500m −0.013 0.012 −1.115 0.265 0.987 0.965 1.010 

Distance_nearest_POE 0.003 0.006 0.424 0.671 1.003 0.991 1.015 

InvSqDist_POE.km 0.028 0.020 1.414 0.157 1.028 0.989 1.070 

Traffic_VMT_500m 0.000 0.002 0.305 0.760 1.000 0.997 1.004 

HighTG (Intercept) 0.253 0.035 7.291 0.000 1.288 1.203 1.379 

Distance_nearest_Majart 0.146 0.128 1.136 0.256 1.157 0.901 1.491 

Street_Length_500m 0.024 0.011 2.120 0.034* 1.024 1.002 1.047 

Distance_nearest_POE 0.005 0.006 0.875 0.381 1.005 0.994 1.017 

InvSqDist_POE.km −0.001 0.020 −0.061 0.951 0.999 0.961 1.039 

Traffic_VMT_500m −0.001 0.002 −0.763 0.446 0.999 0.996 1.002 

LowHDL (Intercept) 0.049 0.035 1.398 0.162 1.050 0.981 1.124 

Distance_nearest_Majart 0.129 0.128 1.006 0.314 1.138 0.885 1.464 

Street_Length_500m 0.032 0.011 2.862 0.004* 1.033 1.010 1.056 

Distance_nearest_POE 0.010 0.006 1.645 0.100 1.010 0.998 1.022 

InvSqDist_POE.km 0.028 0.021 1.319 0.187 1.028 0.988 1.075 

Traffic_VMT_500m 0.000 0.002 0.039 0.969 1.000 0.997 1.003 

HighFBG (Intercept) −0.013 0.034 −0.371 0.710 0.987 0.923 1.056 

Distance_nearest_Majart 0.095 0.127 0.744 0.457 1.099 0.857 1.412 

Street_Length_500m 0.009 0.011 0.782 0.434 1.009 0.987 1.031 

Distance_nearest_POE 0.009 0.006 1.490 0.136 1.009 0.997 1.021 

InvSqDist_POE.km 0.028 0.020 1.371 0.170 1.028 0.989 1.073 

Traffic_VMT_500m 0.000 0.002 −0.119 0.906 1.000 0.997 1.003 

MetS (Intercept) 0.127 0.035 3.589 0.000 1.135 1.059 1.216 

Distance_nearest_Majart 0.022 0.130 0.169 0.866 1.022 0.793 1.319 

Street_Length_500m 0.038 0.011 3.309 0.001* 1.039 1.016 1.062 

Distance_nearest_POE 0.009 0.006 1.564 0.118 1.009 0.998 1.022 

InvSqDist_POE.km 0.006 0.020 0.283 0.777 1.006 0.968 1.047 

Traffic_VMT_500m −0.002 0.002 −1.538 0.124 0.998 0.994 1.001 

* All significant predictors and corresponding p-values are expressed in bold. 
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Predictive Probability Model 
The multivariate regression analysis quantified the relationships between different types of traffic variables and 

risk factors for MetS. Using a stepwise selection technique, researchers built a multivariate logistic regression 

model that showed the best performance in estimating the likelihood of MetS. Based on the modeling, the 

selected variables were the length of street in the 500-m zone, distance to the nearest POE, and traffic VMT in the 

500-m zone (see Table 27). 

Table 27. Summary of Variable Selection for Multivariate Logistic Regression Models Using a Stepwise Selection 
Technique 

Health 
Variable 

Traffic Variable1 Estimate 
Std. 

Error 
z value Pr(>|z|) 

Odds 
Ratio 

Lower 
95% CI 

Upper 
95% 

CI 

Metabolic 
syndrome 

(Intercept) 0.126 0.035 3.586 0.000 1.134 1.059 1.215 

Street_Length_500m 0.038 0.011 3.459 0.001* 1.039 1.017 1.062 

Distance_nearest_POE 0.009 0.006 1.569 0.117 1.009 0.998 1.021 

Traffic_VMT_500m −0.003 0.002 −1.597 0.110 0.997 0.994 1.001 

* All significant predictors and corresponding p are expressed in bold.  

1. Traffic variable units: km, in thousands 

The multivariate regression model estimated the coefficients of the selected traffic variables that were used to 

predict the probabilities of occurring in El Paso, TX, for MetS. The length of street within 500 m was positively 

associated with the likelihood of having MetS (p-value = 0.001). The distance to the nearest POE was positively 

associated with the likelihood of MetS, while traffic VTM within 500 m was negatively correlated with MetS; both 

were not significant. Using these estimates, a land-use map was made for each traffic variable. The land-use maps 

show the length of streets within 500 m, distance to the nearest POE, and traffic VMT within 500 m with the values 

grouped into different areas for visual interpretation (Figure 13). 

The maps show that the areas with the highest street length are located in the central part of the city, while the 

areas with the most traffic are located in the vicinity of the major freeways. The distance to the POE is associated 

with the outer west and northeast and the far east of the city. Each map provides spatial variations, especially with 

regard to spatial patterns of street length and traffic.  

Lastly, researchers used the coefficient estimates from the multivariate logistic regression modeling to calculate a 

predicted probability for MetS. The predicted probability can be obtained from the following equation: 

�̂�  = 

exp {0.126 + 0.038(𝑆𝑡𝑟𝑙𝑒𝑛𝑔𝑡ℎ500𝑚 − 10.731) + 0.009(𝐷𝑖𝑠𝑡𝑃𝑂𝐸 − 9.482) − 0.003(𝑇𝑟𝑎𝑓𝑉𝑀𝑇500𝑚 − 23.337)}

1 + exp {0.126 + 0.038(𝑆𝑡𝑟𝑙𝑒𝑛𝑔𝑡ℎ500𝑚 − 10.731) + 0.009(𝐷𝑖𝑠𝑡𝑃𝑂𝐸 − 9.482) − 0.003(𝑇𝑟𝑎𝑓𝑉𝑀𝑇500𝑚 − 23.337)}
 

The predicted values were applied to a gridded map representative of areas in El Paso, TX, in which the resulting 

layer (Figure 14) shows areas of higher and lower probability of MetS. 
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Figure 13. Traffic-related variables applied to a city grid for (A) street length within 500 m, (B) distance to the 
nearest port of entry, and (C) VMT within 500 m. 

A) B) 

C) 
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Figure 14. Predictive model of higher risk of MetS based on the land-use regression model. 
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Conclusions and Recommendations 

Short-Term Effects of Traffic-Related Air Pollution on Cardiorespiratory Outcomes 
This study examined the short-term associations (24-, 48-, 72-, and 96-hr averages) of traffic-related air pollutants 

(PM2.5, PM10, NO2, and O3) with biomarkers of respiratory and cardiovascular disease in a group of uninsured 

participants from low-income communities in El Paso, TX. Researchers found associations of short-term air 

pollutant concentrations with respiratory outcomes, which was expected. However, researchers also found 

associations with metabolic risk factors such as BMI, waist circumference, and fasting glucose. 

FEV1 was negatively correlated with average concentration levels of PM2.5 (24, 48, and 96 hr), indicating a 

relationship between lung function and ambient PM2.5 before the measurement. Specifically, this respiratory 

indicator represents an increase of risk to developing chronic obstructive pulmonary disease (COPD). Furthermore, 

PEF, which is also an indicator of the respiratory risk of COPD, was negatively correlated not only with PM2.5 but 

also NO2. However, researchers did not see an influence by coarse particles (PM10), which might indicate the 

significant effects came from smaller particles, which affect the lower respiratory tract and can further cause 

obstructive disease. Further analysis using the best results available for respiratory indicators (FEV1, FVC, and PEF), 

as interpreted by the spirometry software (CareFusion Spirometry PC Software™ [36-SPC1000-STK]), further 

confirmed the associations with PM2.5 air pollutants and NO2. 

eNO is a measure of airway inflammation and useful in the treatment and adherence of asthma treatment but was 

not correlated with concentration levels of air pollutants in the selected population. Given that the inclusion 

methods do not ask if a participant has asthma, researchers cannot subset the data to explore if a relationship 

exists in this subgroup. Also, based on the lung function parameter and related associations with air pollutants, 

researchers can infer the patterns align more with an obstructive respiratory disease (like COPD) than restrictive 

respiratory diseases like asthma.  

Researchers also considered the percent predicted values of lung function. However, the analyses did not show 

any significant correlation with air pollutant concentration levels; however, there were associations with the 

FEV1/FVC ratio, which is a clinical marker that can differentiate lung obstruction from restriction. A ratio of 0.7 is 

indicative of lung obstruction. Given the negative correlations found with PM2.5 and NO2 in different time windows, 

lung obstruction seems to be more prevalent in the selected population.  

The short-term associations with risk factors related to obesity (BMI and waist circumference) both in linear and 

logistic models were not expected as part of this study. Moreover, the relationship was present across a majority 

of average air pollution average values before the date of examination. Researchers do not assume a causal effect 

between a short-term exposure to air pollution and obesity but do theorize this is due to the lack of variation of air 

pollution exposure in the short term. This could be reflective of the medium to long exposure, which can be also 

representative of the environmental conditions, neighborhoods where participants live, and locations of the 

CAMSs assigned to them. 

Researchers did not find associations with other metabolic outcomes such as high BP or an altered lipid profile but 

did find associations with FBG. In linear models, researchers normalized the values and further confirmed this 

relationship in logistic models by looking into participants with high glucose levels. Possible reasons for this 

increase include oxidative stress and inflammation cause by air pollution exposure (Bowe et al., 2018; Eze et al., 

2015; Wolf et al., 2016). Also, it is possible that measures related to obesity such as waist circumference can be 

considered better predictors of air pollution exposure since a unit change in waist (cm) is metabolically more 

important than unit changes in lipid profile and glucose (mg/dl). 
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Strengths and Limitations 
The present study considered measures of ambient air pollution at nearby CAMSs. However, there could be some 

variation in the participants’ indoor environment. It is beyond the scope of this research to consider 

measurements of indoor air pollution; however, from pilot data, there is a direct relationship between ambient 

and indoor air pollution, which is further confirmed by the literature (Andersen, 1972; Raysoni et al., 2013; Zora et 

al., 2013).  

The measurements of air pollution exposure rely on CAMSs with available data. In some cases, the stations were 

far from certain areas in El Paso County, which led to exclusion of some participants from the analysis. 

Furthermore, not all CAMSs had measurements available for every traffic-related pollutant. However, the number 

of CAMSs that measured O3 was at least two times more than those that measured the other pollutants, and 

researchers still observed associations similar to those for the other pollutants. 

Comparison with Other Studies 
Respiratory outcomes have been associated with air pollution exposure in other epidemiological studies. The 

Framingham study found that moderate exposure measured by the Environmental Protection Agency’s Air Quality 

Index for PM2.5, NO2, and O3 was associated with lower FEV1 considering 24- and 48-hr pollutant concentration 

averages before the measurement (Rice et al., 2013). A study among 1,694 female non-smokers from Wuhan-

Zhuhai, China, found that in a city with high pollutant levels, the moving average of PM2.5, PM10, NO2, and O3 

exposures were significantly associated with FEV1 reductions. Also, in a low-level air pollution city, PM10 (72-, 96-, 

and 120-hr), O3 (72-hr), and PM2.5 (96- and 144-hr) exposures were significantly associated with reduced FEV1 

(Zhou et al., 2016). The Zhou et al. study also found associations with FVC. However, in the current study, the 

relatively low levels of exposure in this study could be the reason why these associations were not found.  

Furthermore, a repeated measures study from Belgium found that an increase in PM10 on the day of the clinical 

examination was associated with lower FVC, FEV1, and PEF. Also, an increase of NO2 was associated with a 

reduction in PEF on the day of the examination (Panis et al., 2017). A study of ambient air pollution with lung 

function in adults at very low levels in Europe did not observe an association of air pollution with longitudinal 

change in lung function but did observe that an increase in NO2 exposure was associated with lower levels of FEV1 

and FVC (Adam et al., 2015). Also, an increase of PM10, but not other PM metrics (PM2.5, the coarse fraction of PM, 

and PM absorbance), was associated with a lower level of FEV1. The associations were particularly strong in obese 

persons. 

Regarding metabolic outcomes, Chuang et al. (2010) observed increased PM10 was marginally (p < 0.10) associated 

with elevated SBP (24 hr) and TG (24 to 120 hr), and statistically associated with hemoglobin A1c (72 hr) and 

reduced HDL (24 hr). Also, O3 was associated with DBP (72 and 120 hr) and hemoglobin A1C (24, 72, and 120 hr) 

and marginally associated with TG and fasting glucose (Chuang et al., 2010). Unfortunately, this study did not 

consider PM2.5 measurements, which further showed some associations in the current study. Also, a study 

conducted in China showed a positive correlation between PM10, NO2, and O3 and BMI (Li et al., 2015), which 

further aligns with some of the associations from the current study, although the time window Li et al. considered 

for the association was based on the medium term instead of short term. Furthermore, a 2014 review by 

Weichenthal el al. (2014), which considered 14 studies of short-term effects, suggested that “the consistent 

pattern of stronger associations among obese subjects suggests that obesity may modify the impact of PM2.5 on 

cardiovascular health.” 

Long-Term Effects of Transportation Data on Cardiorespiratory Outcomes 
Researchers examined the association of respiratory and cardiovascular risk factors with the long-term effects of 

air pollution related to vehicle traffic (VMT and street length) and distance to air pollution sources (major arterial 

roads and international POEs) using LUR models and GIS measures, in a large dataset of adults residing in low-
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income in El Paso, TX. This study found expected associations with respiratory outcomes caused by long-term 

exposure using the available data subset from the first year of the larger health study. Researchers found 

correlations of length of street within the 500-m and 1000-m impact zone as well as the VMT with measures of 

lung function (FEV1, FVC, and PEF). Furthermore, multivariate models showed the length of street within 500 m 

was an important traffic predictor for lung function based on the peak expiratory flow (PEF and PEF Best).  

Regarding the cardiovascular outcomes, the most significant predictor in the LUR models of MetS risk factors was 

the total length of the street within a 500-m radius. The increase in the street length was associated with 

increasing waist circumference and TG and decreasing HDL in multivariate models. Furthermore, the increase in 

the inverse of the distance squared to the POE (which implies a decrease in the distance to the POE) was 

significantly associated with an increase in glucose levels. The modeling also considered the PBP, a measure of the 

difference between SBP and DBP, which showed that an increase in PBP was associated with the increase in the 

amount of traffic within a 500-m radius and the proximity to the nearest POE.  

These results were further confirmed in logistic regression models, which found that as the total length of the 

street increases, the risks of a large waist circumference, high TG, and low HDL cholesterol were observed. Finally, 

models considering those participants with MetS (three or more risk factors) showed an increasing likelihood of 

MetS was also related to the increased street length within 500 m. 

Strengths and Limitations 
This study provides a large sample of low-income participants from El Paso, TX, representing the population 

distribution living all over the county. Also, the use of LUR models allowed further exploration considering 

measures of vehicle traffic, which complements other studies that have relied on concentration levels of air 

pollutants from CAMSs, which are not always available or are located far from the participants’ neighborhoods.  

However, this study has limitations. Variations are assumed between the indoor environment and the ambient air 

pollution exposure. It is beyond the scope of this research to consider measurements of indoor air pollution; 

however, other studies in the region have shown there is a direct relationship between ambient and indoor air 

pollution. 

Also, the measurements of traffic rely on GIS layers from the El Paso Metropolitan Planning Organization, Census, 

and PdnMapa. However, data from participants that lived farther from certain areas in El Paso County were not 

covered by the layers, and researchers excluded them from the analysis. Furthermore, for participants living less 

than 1000 m from the border area, this analysis did not include the traffic variables or GIS layers from Ciudad 

Juarez in Mexico. Researchers expect the lack of information did not have much influence since not many 

participants lived close to neighborhoods in Ciudad Juarez; however, future studies would benefit from including 

information from GIS layers with data from Mexico.  

Comparison with Other Studies 
Studies about the impact of long-term exposure to outdoor air pollution on health outcomes have played a crucial 

role in recent decades (Amini et al., 2017; Hoek et al., 2008). Other studies have used LUR to factor exposure of 

traffic-related air pollution. In 1999, an LUR model was developed to predict concentrations of NO2 and other 

related pollutants; the study found the most useful variables were elevation, population density, distance to an 

international POE, and distance to a petroleum facility considering two monitoring sites (Smith et al., 2006). This 

was further evaluated in 2006–2007 using a series of mixed model LURs, which confirmed the mentioned variables 

as useful predictors of NO2 even when considering seasonal variation (Gonzales et al., 2012).  

A study modeling the PM concentrations along I-10 in El Paso, TX, considered dispersion and LUR models that 

considered wind speed and daily traffic counts, which suggested particle concentrations impact within a 1,000-m 
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buffer along the interstate (Olvera et al., 2014). A further study focusing on PM2.5 considered surrogate variables of 

traffic emission at four monitoring sites such as land use, traffic intensity, population density, and property value 

to estimate pollutant concentrations; however, results were heavily influenced by climate-specific meteorological 

events (Alvarez et al., 2018). Furthermore, a PM2.5 LUR study incorporated a principal component analysis to 

optimize the model, which found a combination of traffic variables (VMT, speed, traffic demand, road length, and 

time) to be a good predictor (Olvera et al., 2012). 

However, few studies have correlated the use of LUR with air pollution and health outcomes. A 2015 study tested 

relationships for residential pest and PM2.5 exposures with children’s self-reported wheezing severity based on 

socioeconomic factors and a previously developed LUR model (Grineski et al., 2015). 
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Outputs, Outcomes, and Impacts 

Short-term exposure to traffic-related pollutants was correlated with respiratory outcomes related to pulmonary 

obstruction, which could be explain by inflammation of the respiratory tract. Future studies should consider clinical 

classifications of obstructive respiratory outcomes such as COPD and consider the effects on FEV1 and PEF. 

Researchers also found relationships of fasting glucose levels with short-term effects of air pollution exposure. 

Researchers further recommend studies that not only look at high levels of fasting glucose but also expand on 

levels of glycated hemoglobin and diabetes diagnosis. 

This study might be the first to find associations of short-term exposure to air pollutants with obesity, which might 

be more related to the neighborhood locations of participants and socioenvironmental conditions. In future 

studies, it is recommended to consider obesity as an outcome for air pollution exposure and consider extended 

windows of time to assess long-term exposure. Furthermore, the use of LUR models can further elucidate this 

relationship with the characteristics of the neighborhoods surrounding the participants. 

The long-term effects of traffic-related air pollution were found to be associated with respiratory and 

cardiovascular health outcomes. The length of the streets within the 500-m radius was the most significant 

predictor for lung function measurements (PEF and PEF Best). The LUR models showed the total length of the 

street within the 500-m impact zone was also an important traffic-related variable to predict MetS risk factors 

(waist circumference, TG, and HDL cholesterol). The final selected model for MetS classification produced a 

predicted probability map showing El Paso areas of higher and lower probability of MetS. 

The dissemination of results can lead to decision making and improve policy related to healthy living in 

communities close to busy roadways. Furthermore, the use of predictive models based on LUR can allow further 

identification of communities at risk for cardiorespiratory health outcomes. Future studies should focus on models 

that integrate LUR with other types of data in the region to complement existing studies, which can further allow 

more accurate predictors of cardiorespiratory disease. Furthermore, the use of such models can be paired with 

clinical health outcomes to improve strategies aimed to reduce the effects of air pollution exposure on health and 

associated diseases. 

Research Outputs, Outcomes, and Impacts 
Peer-reviewed publications include: 

• Aguilera, J., Jeon, S., Raysoni, A., Rangel, A., Li, W. W., and Whigham, L. (2020). Moderate to vigorous 

physical activity levels negatively correlate with traffic related air pollutants in children with asthma 

attending a school near a freeway. (Manuscript in preparation.) 

• Aguilera, J., Jeon, S., Chavez, M. C., Ibarra-Mejia, G., Ferreira-Pinto, J., Whigham, L., and Li, W. W. (2020). 

Land use regression of long-term transportation data on metabolic syndrome risk factors in low-income 

communities. (Manuscript submitted to the Transportation Research Board.) 

Conference papers submitted include: 

• Aguilera, J., Jeon, S., Chavez, M. C., Ibarra-Mejia, G., Ferreira-Pinto, J., Li, W. W., and Whigham, L. D. 

(2020). Associations of traffic and related air pollutants with obesity in low-income populations in El Paso, 

TX. (Abstract submitted to the Obesity Society’s Annual Conference: ObesityWeek, Atlanta, GA, November 

2020.) 

• Aguilera, J., Jeon, S., Chavez, M. C., Ibarra-Mejia, G., Ferreira-Pinto, J., Whigham, L., and Li, W. W. (2020). 

Short-term associations of traffic-related air pollutants on cardiorespiratory risk factors from low-Income 
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populations in El Paso, TX. (Abstract submitted to the Transportation, Environment, and Energy: An 

Integrated Research Symposium, Transportation Research Board, Denver, CO, July 2020.) 

• Aguilera, J., Jeon, S., Chavez, M. C., Ibarra-Mejia, G., Ferreira-Pinto, J., Whigham, L., and Li, W. W. (2020). 

Land use regression modeling to assess effects of long-term transportation data on metabolic syndrome 

risk factors of low-income communities, TX. (Abstract submitted to the Transportation, Environment, and 

Energy: An Integrated Research Symposium, Transportation Research Board, Denver, CO, July 2020.) 

• Aguilera, J., Jeon, S., Chavez, M. C., Ibarra-Mejia, G., Ferreira-Pinto, J., Whigham, L., and Li, W. W. (2020). 

Short-term associations of traffic-related air pollutants on cardiorespiratory risk factors from low-income 

populations in El Paso, TX. (Abstract submitted to and accepted by the second Transportation, Air Quality, 

and Health Symposium, Riverside, CA, May 2020.) 

Presentations at conferences and technical meetings include: 

• Aguilera, J. (October 2019). Moderate to vigorous physical activity levels negatively correlate with traffic 

related air pollutants in children with asthma attending a school near a freeway. Stanford Postdoctoral 

Recruitment Initiative in Sciences and Medicine presentation, Stanford, CA. 

• Aguilera, J. Association of traffic and related air pollutants on cardiorespiratory risk factors from low-

income populations in El Paso. The University of Texas at El Paso, El Paso, TX. 

• Aguilera, J. (March 2020). General aspects of COVID-19: Airborne transmission, immune response, and 

chronic disease risk. Health Clinic Day, Consulate General of Mexico in El Paso, El Paso, TX. 

• Aguilera, J. (July 2020). Short-term effects of traffic related air pollution on cardiorespiratory outcomes 

among low-income residents from El Paso, TX. Joint Advisory Committee for the Improvement of Air 

Quality in the Ciudad Juárez, Chihuahua/El Paso, Texas/Doña Ana County, New México Air Basin (virtual).  

• Jeon, S. (July 2020). Land use regression modeling to assess effects of long-term transportation data on 

metabolic syndrome risk factors of low-income communities in El Paso, TX. Joint Advisory Committee for 

the Improvement of Air Quality in the Ciudad Juárez, Chihuahua/El Paso, Texas/Doña Ana County, New 

México Air Basin (virtual).  

• Aguilera, J. (August 2020). Land use regression of long-term transportation data on metabolic syndrome 

risk factors in low-income communities. Fundación Best monthly seminar in Ciudad Juarez. 

• Results and main findings (the predicted probability map for MetS) were shared with the public in a 

virtual Joint Advisory Committee meeting. 

Technology Transfer Outputs, Outcomes, and Impacts 
This project had the following technology transfer outputs, outcomes, and impacts: 

• Air quality data were acquired from TCEQ’s CAMSs, including hourly air pollutant data. 

• Time-integrated air pollutant data of 24-, 48-, 72-, and 96-hr averages were processed for each subject.  

• Short-term pollution exposures and long-term transportation data were extracted using GIS mapping. 

• GIS layers from Census.gov and the El Paso Metropolitan Planning Organization were used. 

• Statistical code for LUR modeling was developed. 

• The interpolation technique was applied to produce a predicted probability map. 

• Software was used as part of this study including R and ArcGIS Pro. 

Education and Workforce Development Outputs, Outcomes, and Impacts 
This project had the following education and workforce development outputs, outcomes, and impacts: 

• This project supported a doctoral student from Health Science at UTEP as a research associate. 
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• The project was conducted as part of a doctoral dissertation in the Interdisciplinary Health Sciences 

program at UTEP. 

• An undergraduate student from the Department of Civil Engineering at UTEP was involved in the project. 

• Training and education in application of GIS information to transportation data were conducted. 
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