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A B S T R A C T   

Dockless mobility has been the biggest disruptive force in the shared mobility industry solving the “first-last” 
mile issue. With their high adoption levels combined with little to no regulation regarding their usage, these 
users have been driving along with motorized vehicles exposing them to major concerns. The users are exposed 
to high levels of traffic-related air pollution (TRAP) due to their direct exposure to vehicle exhaust. This study 
aims to understand the spatial and temporal dimensions of this emerging transportation mode in terms of travel 
behavior patterns, geographical aspects of travel, interactions between the travel route taken with the existing 
vehicle traffic, and resulting air pollution and exposure. The travel behavior patterns are evaluated through 
spatial-temporal analysis of a sample of e-scooter trip data collected in 2018 in the City of Austin and an online 
travel behavior survey. The analysis identified areas with peak usage, and peak ridership time. The survey results 
found the e-scooter user demographics to be mostly white males, in the 26–45 age range, with an undergraduate 
degree and working full-time. Secondly, key responded in influencing the use of an e-scooter are trip length, 
connectivity to transit, congestion and parking issues, and pollution reduction. Thirdly, e-scooter predominantly 
replaced personal vehicles and shared ridership in case of home-to-work trips and replaced walking for con
necting to transit stops. The exposure to TRAP was obtained by integrating the spatial-temporal dynamics of e- 
scooter trips with spatial-temporal dynamics of pollutant concentrations modeled from traffic. Exposure analysis 
found peak exposure levels during midday and evening periods focused in the Central Austin area. This area 
houses the University of Texas campus and several neighborhoods with lots of shopping, restaurants, bars, and 
live music avenues. The findings are useful for policymakers and planners when planning for infrastructure 
changes air pollution control measures, incentive programs, and policies to motivate shared mobility.   

1. Introduction 

Dockless mobility has been the most prominent disruptive force in 
the shared mobility industry solving the “first-last” mile issue. Dockless 
bikeshare considered the fourth generation in shared mobility is based 
on smart mobility combining dockless systems, and cellular and GPS 
technology. The datasets related to smart shared mobility are increas
ingly available and are valuable sources to better understand population 
behavior and mobility issues in urban areas (Shaheen et al., 2010). The 
dockless mobility (bikes and e-scooters) can be rented directly through 
the user’s mobile phone, allowing the user to go through the city streets 
at around 15 miles per hour (6.7 m/s). In 2018, electric scooters, or “e- 

scooters” replaced pedal bikes and became the preferred vehicle for 
dockless vendors (National Association of City Transportation Officials 
(NACTO), 2019). As per the National Association of City Transportation 
Officials (NACTO), cities such as Austin, and Santa Monica were some of 
the early adopters of e-scooters that grew in number to over 85,000 e- 
scooters available for public usage throughout the country. Early studies 
revealed a more accessible, racially diverse set of riders and a higher 
proportion of women riders, and a lower household income for dockless 
riders than docked users (Virgina Polytechnical Institute and State 
University, 2018). Studies (Xu et al., 2019; Yang et al., 2019) conducted 
in China, and Singapore have found dockless trips to be higher during 
weekends compared to weekdays, and an increase in demand with the 
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presence of a public transportation stop highlighting their increased use 
for “first-last” mile connections. Contrary to these findings, a study 
conducted in Washington D.C. revealed that the e-scooters were used 
mainly for leisure or recreational purposes (McKenzie, 2019). Similar 
findings (Foissaud et al., 2022) were reported in a spatio-temporal 
assessment of e-scooter trips across 4 European cities that found e- 
scooter users to be mostly tourists, who ride during the daytime, over 
longer distances at low speeds, around the downtown area and other 
tourist attractions. Bai and Jiao, 2020 compared the e-scooter usage 
patterns between Austin, TX, and Minneapolis, MN, and found similar 
spatial patterns with denser usage patterns focused at the downtown and 
University campuses in both cities. However, temporal patterns were 
different with higher usage during afternoons and weekends in Austin, 
compared to higher usage during evenings and stable patterns across the 
week in Minneapolis. 

Studies have focused on the operational characteristics of e-scooters, 
and there is a gap in evaluating their environmental and health impact in 
terms of the exposure levels to air pollution. Key environmental issues 
evaluated by studies include lifecycle analysis (LCA) and recycling of e- 
scooters. A study (Hollingsworth et al., 2019) based on a lifecycle global 
warming analysis found the baseline scenario based on current condi
tions to result in 65% higher lifecycle greenhouse gas (GHGs) emissions 
due to the e-scooter use compared to the transportation modes that were 
being replaced. The study found the likelihood to drop by 35–50% in 
alternative scenarios evaluated with efficient strategies such as 
increasing scooter lifetimes and using efficient vehicles and less frequent 
charging strategies, reducing collection and distribution distances, etc. 
Similar findings to the baseline scenario were found by a study based in 
Paris (de Bortoli and Christoforou, 2020) that estimated an additional 
thirteen thousand tons of GHGs emissions for one million users as a 
result of e-scooters attributed mainly to the mode shifts from lower- 
emitting modes. Providing a split between the different components of 
an LCA, a study (Chester, 2019), found the manufacturing and materials 
to be the highest attributing factor to lifecycle GHGs emissions, followed 
by collection, distribution, and charging of e-scooters. All these studies 
point to the fact that while e-scooters may seem to be a sustainable so
lution to solving congestion, and last-mile issues and reducing emis
sions, however, they do not necessarily reduce overall environmental 
impacts without considering how efficiently they are being collected, 
distributed, and recycled. 

In addition to these environmental issues, the other aspect of e- 
scooter that has not been evaluated as much as the LCA is the exposure 
of e-scooter users to traffic-related air pollution (TRAP), as several cities 
lack bike lanes, forcing users to travel on sidewalks or shared lanes with 
direct exposure to motorized vehicle emissions. The vehicles emit a 
complex mixture of pollutants that are found to contribute to various 
adverse health effects (Mukherjee and Agrawal, 2017; Health Effects 
Institute (HEI), 2010). These adverse health effects cover a variety of 
morbidity and diseases including but not limited to premature mortality, 
cardiovascular, respiratory, birth, and developmental effects, as well as 
cancer (Adar and Kaufman, 2007; Wilhelm and Ritz, 2003). Commuting 
next to major arterials is critical because of the peaking tendency of 
pollutant concentrations near roadways and longer travel time than 
vehicle commuters (De Hartog et al., 2010; Hatzopoulou et al., 2013). 
While several studies have evaluated exposure levels for bicyclists and 
pedestrians (Boriboonsomsin et al., 2017; Lefebvre et al., 2013), there 
have been limited studies evaluating e-scooter users and their exposure 
levels since this transportation mode is relatively new, and their usage 
patterns are yet to be fully understood. 

The present study aims to understand the travel behavior patterns 
and the exposure levels experienced by a sample of e-scooters using a 
predictive exposure modeling system for the City of Austin in Texas. The 
travel behavior patterns were evaluated through a combination of 
geospatial analysis of 3.4 million records of commute data collected and 
an online survey launched through social media. The exposure to TRAP 
experienced by the users was evaluated through an integrated modeling 

platform combining e-scooter trip trajectory data, traffic activities, 
emissions, meteorology, and pollutant dispersion. An e-scooter trip 
means a single or one-direction e-scooter movement with an origin and 
destination within the study area. An exposure concentration map for 
particulate matter (PM), considered a health marker of exposure to 
traffic emissions was developed (World Health Organization (WHO), 
2003). Finer PM (PM2.5) was chosen as it presents a greater health threat 
than coarser PM because of its small size that allows deeper penetration 
into the human body (City of Austin (COA), 2018). The finding helped to 
highlight the hot spots of peak exposure and variation in exposure levels 
during different periods depending on the usage levels and pollutant 
dispersion. The modeling system and findings obtained can be used to 
facilitate the planning of city transportation infrastructure and for 
commuter decision-making on route and time choice. The paper pro
vides an overview of the methods, data collection, and analysis, fol
lowed by results and conclusions drawn from the chosen case study. 

2. Methods 

2.1. Study extent and e-scooter trip data 

The City of Austin, the capital city of Texas in Travis County is one of 
the fastest-growing metros in the country. The city houses the University 
of Texas flagship campus and is also known as the live music capital city 
of the world due to the major music festivals that are hosted there. In 
addition to a large number of floating populations, the city has people 
migrating from other states due to the relocation of several companies to 
Austin. As per the NACTO 2018 statistics presented, Austin is one of the 
three U.S cities with the most e-scooter usage (National Association of 
City Transportation Officials (NACTO), 2019). The climate is charac
terized by hot, humid, and long summers and short, milder winters. The 
City of Austin (COA) launched the dockless mobility (micro-mobility) 
pilot program in early 2018. The Austin Transportation Department 
expanded the scope of this pilot program to include dockless scooters 
and e-scooter operators. Based on the information obtained from the 
COA at the time of this study, there were 15,350 scooters and 2050 bikes 
available across the Austin area provided by eight operators (Bird, 
JUMP, Lime, Lyft, OjO, Skip, Spin, and VeoRide). The mobility data 
obtained provided anonymized information related to the dockless 
vehicle trips, start- and endpoints of trips, and monthly summary sta
tistics of the trips made, devices used, and distance traveled. The dataset 
acquired for this study included a total of 4.1 million records that 
occurred between March 2018 and early April 2019. The key parameters 
utilized consisted of origin-destination for each trip, trip distance, and 
duration, start and end time, mode (bike or scooter), etc. Missing and 
invalid records that did not have a valid latitude or longitude (values far 
away from the Austin area) and records with unrealistic trip distance 
and duration were excluded. The data was then filtered to include only 
e-scooter trips with a duration lesser than 10,000 s (2.78 h) and a dis
tance <15.5 mi (25 km). This process resulted in removing 15% of the 
dataset acquired. The final data analyzed consisted of a total of 
3,462,084 records. 

2.2. Survey 

An online survey designed to understand the usage patterns of e- 
scooters was launched through social media. The survey consisted of 14 
questions categorized into (A) demographic characteristics, (B) e- 
scooter questions in general that included information about factors 
encouraging the use of e-scooters, usage of other modes, riding fre
quency and purpose, (C) most recent e-scooter trip that consisted of 
questions related to pick-up/drop-off locations, time and duration and 
use of an alternative mode corresponding to the most recent trip taken 
by the respondents. The survey was launched through the COA and 
other academic institution-related newsletters and social media from 
December 2019 through March 2020. A total of 100 users completed the 
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Fig. 1. Snapshot of the online survey. 
(The online survey administered was used to understand the demographics, and travel patterns of e-scooter users in the City of Austin. Fig. 1 shows a snapshot of the 
introduction page and questions related to the most recent e-scooter trip taken by the respondent). 

Fig. 2. Modeling framework. 
(The modeling framework consists of an integration 
of different layers of data starting with the back
ground map based on which the e-scooter trip tra
jectories were generated. Next, the travel network 
and traffic activities layer was combined with mete
orology and land use conditions to estimate the 
dispersion of the pollutant emissions. The e-scooter 
trajectories were then combined with spatial and 
temporal distribution of pollutant concentrations to 
estimate the personal exposure levels to traffic 
emissions).   
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survey. The survey was reviewed and approved by the Texas A&M 
University Institutional Review Board (IRB#: IRB2019–0878). 

Fig. 1 shows a snapshot of the survey. 

2.3. Exposure assessment 

The exposure modeling framework is shown in Fig. 2. The modeling 
started with the assembly of base imagery of the case study region. The 
e-scooter trips were extracted from the COA database and after filtering 
missing and invalid data resulted in a total of 3.5million trip records. 
Trip information extracted consisted of trip start and end points, and the 
duration of the trip. Traffic activities corresponding to traffic volume, 
speed, and vehicle fleet mix on the major roadways were extracted from 
Austin’s regional travel demand model (TDM) maintained by the Capital 
Area Metropolitan Planning 3 Organization (CAMPO). The model uses 
information on economic growth, population, land use information, and 

existing transportation network to predict the travel demand for existing 
and future conditions. The model is based on a 4-step methodology of 
trip generation, trip distribution, mode choice, and trip assignment. 

Based on this methodology, the model produces performance mea
sures related to traffic volumes, average speed, and travel time. The 
Environmental Protection Agency’s (EPA) regulatory-approved 
MOVES2014b model was utilized for estimating emissions. The 
MOVES model applies a modal-based approach by estimating emissions 
for each unique combination of operating modes or bins based on 
vehicle operating conditions and characteristics. The model uses site- 
specific traffic activity data and combines it with other local-specific 
information corresponding to age distribution, temperature, humidity, 
fuel supply, inspection, and maintenance program parameters. These 
inputs were obtained from the MOVES default database that contains 
national data based on historic and long-term systematic measurements 
distributed temporally and spatially to states or counties using 

Table 1 
Flow of Data between Modeling Components.  

Modeling Model Input Parameters Output 

Traffic Activities Austin Regional Travel Demand Model (TDM) Economic and land use information, 
transportation network, and demand 
estimation* 

Outputs at the roadway link level consist of average 
speed and vehicle volume 

Traffic-related 
Emissions 

EPA’s MOVES2014a Model Roadway link level inputs (traffic 
volume, speed, and fleet mix) from TDM. 
Meteorological, fuel supply parameters, 
and age distribution from MOVES 
default database 

Outputs consist of total emissions and emissions factors 

Pollutant 
Concentrations 

EPA’s AERMOD (19191) Model Surface and upper air data from weather 
stations processed using AERMOD 
preprocessors. 
Emission factors from MOVES model. 

Concentration levels obtained at discrete user-defined 
receptor locations averaged at the census block level 

E-scooter Trips City of Austin dockless mobility database Trip start and end points, location, and 
trip duration 

Trip information (start and end points, location, and 
duration) corresponding to case study extent for the 
period considered were extracted 

Exposure 
Assessment 

Exposure assessment formulation where exposure is 
measured as a weighted product of time and pollutant 
concentration in different locations 

Pollutant concentrations from AERMOD 
and e-scooter trip trajectory 
information. 

Exposure measured for each e-scooter trip and summed 
up for all trips corresponding to the case study location 
and period  

* Beyond the scope of this study. 

Fig. 3. Heat map of the e-scooter trip starts. 
(Heat map of e-scooter trip data highlights clustering of trips starts at the downtown and near the University of Texas, Austin areas. Exposure assessment was 
conducted for these hot-spot areas). 

S. Vallamsundar et al.                                                                                                                                                                                                                         



Journal of Transport Geography 105 (2022) 103477

5

allocation factors (Environmental Protection Agency (EPA), 2021). 
Based on these inputs, the model estimates total emission inventories or 
emission factors at different geographic scales ranging from national, 
county, and detailed roadway link levels. For this study, the emission 
factors were estimated at the roadway link level corresponding to the 
case study location. The resulting emission factors were then incorpo
rated into an air dispersion model to calculate the pollutant dispersion in 
the atmosphere based on the meteorological and land use parameters. 

Dispersion modeling was conducted using EPA’s approved regula
tory AERMOD dispersion model, and AERMET and AERSURFACE 
meteorological preprocesses (Environmental Protection Agency (EPA), 
2004). AERMOD calculates the fate and transport of pollutants based on 
Gaussian formulation and is suited for primary pollutants as it does not 
account for the chemical transformation or reaction between pollutants. 
AERMOD is utilized for this study because traffic-related pollutants are 
typically confined to near emission sources and do not travel far beyond. 
The model calculates PM2.5 concentrations from roadway traffic by 
characterizing roadways as a series of area sources based on traffic ac
tivity, and the geometry of the roadway links. Raw surface and upper air 
data were extracted from the National Oceanic and Atmospheric 
Administration (NOAA) and converted into a format compatible with 
AERMOD using AERMET and AERSURFACE. The PM2.5 concentrations 
were estimated at discrete receptor locations placed throughout the 
modeling domain over an hourly averaging period. 

Early studies (Duan, 1991; Ott, 1982), mathematically established 
the formulation for exposure as follows: 

E =

∫

C(t)dt  

where E exposure is measured as the product of time t and concentra
tions C in different locations. Exposure at location x, y, z is calculated by 
determining the concentration at that location and time combined with 
the amount of time spent at that location. On the other hand, dynamic 
exposure for example while commuting from location A to location B is 
calculated by determining the time-weighted concentration at both lo
cations. A similar approach was adopted for e-scooters by calculating 
their exposure levels based on the route taken, amount of time spent at 
each location within the route, total trip duration, and corresponding 
pollutant concentration at each of those locations. For this purpose, each 
e-scooter trip was split into trajectories and exposure levels were 
computed based on the concentration levels at the location of the tra
jectory and time spent at the location. Total exposure for a given trip was 
obtained by combining all split trajectories of the trip. Table 1 lists the 
flow of data between different modeling components involved in 
exposure assessment. A detailed explanation of the different components 
involved in the modeling framework can be found in (Vallamsundar 
et al., 2016). 

3. Results 

3.1. Geospatial and temporal analysis 

The spatial distribution of trips (Fig. 3) highlighted a high density or 
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Fig. 4. Temporal variation in the e-scooter data. 
(This figure shows the temporal variation of the e-scooter data based on an analysis of 3.5 million trip records. Fig. 4(a) shows the trip data throughout the analysis 
period from April 2018 – March 2019 since the inception of e-scooters in April. Trips were found to increase from August 2018 with a peaking of trips in March 2019. 
Hourly variation of trips over seasons (Fig. 4b) presents one predominant peak between 12 pm – 7 pm unlike bimodal peaks observed with typical urban 
traffic conditions). 
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utilization rate in the downtown area and near the University of Texas at 
Austin campus. 

The temporal analysis consisted of evaluating the hourly, monthly, 
and seasonal variation of the trips over the period (April 2018–March 
2019). Fig. 4 results (Fig. 4a) showed an increase in trips from August 
2018 to March 2019. The slight decrease in trips between December 
2018 – January 2019 was attributed to the holiday season and lower 
temperatures. The peaking of trips in March 2019 was due to the starting 
of the spring season with warmer temperatures and events such as Cir
cuit of The Americas (3/1/2019 to 3/32019), South by Southwest music 
festival (3/8/19–3/17/19), Rodeo Austin (3/16/19–3/30/19) sched
uled around the city. The hourly seasonal variation of trip counts 
(Fig. 4b) showed the trip counts to increase starting from 7 am, peaking 
from 12 to 7 pm, and then decreasing at around 10 pm. The diurnal 
pattern for all seasons exhibited only one predominant peak and differed 
from the bimodal peak (morning and evening) typical in urban traffic 
distribution. This divergence from the typical urban traffic behavior 
indicated that the e-scooters were not only being used to meet the first 
and last-mile demand (3, 6) but also for other purposes (errands, rec
reational, etc.). This was further exhibited by observing the variation in 
e-scooter trip distance and duration. 67% of the trips were found to 
occur during the weekdays versus 33% during the weekends and when 
normalized by the time distribution of weekdays vs weekends, users 
have a 23% higher tendency to use e-scooters over the weekends for 
other purposes compared to weekdays. The average duration and dis
tance were found to be 687 s (11.45 min) and 1495 m (0.93 miles), 
respectively. 

3.2. Survey results 

The survey results on the respondent’s demographic characteristics 
(Table 2) highlighted predominant users were male, white, or Cauca
sian, between 18 and 45 years, mostly with an undergraduate degree or 
higher (89%), and working full-time (71%). These results in comparison 

with the overall City of Austin’s demographics based on 2016–2020 
Census data (Austin, 2022) show the survey respondents predominantly 
to be mostly male white, between 26 and 45 years of age. This result is 
probably biased as the survey was administered online through social 
media and thus might have been frequented by a section of the popu
lation having online access and social media. 

Responders were asked to rank the factors that influenced their de
cision to ride an e-scooter. The most responded factor influencing the 
use of e-scooters corresponded to trip length (69% strongly agreed), 
connectivity to transit (66%), congestion and parking issues (62%), and 
pollution mitigation (60%) (Fig. 5a). In terms of usage frequency of 
other modes, responses (Fig. 5b) exhibited personal vehicle (50%) and 
ridesharing (53%) to be used much less than due to e-scooters, and 
transit usage remained the same (49%). The type of trip made using the 
e-scooter was classified into (1) connecting to a bus/train stop, (2) 
connecting home to work or home to school, and (3) errands or non- 
work trips. Based on the responses, it was found that 13% used an e- 
scooter to connect to a transit stop, 43% to connect home to work/ 
school, and 44% for errands or non-work trips. The responders were 
asked the mode that would be used for these trips in case an e-scooter 
was not available. The results (Fig. 5c) highlighted walking to be the 
most preferred mode for connecting to a transit stop (33%), a personal 
vehicle for both trips connecting from home to work/school (43%), and 
errands or non-work trips (39%). Overall, combined for all trip pur
poses, 33% would have biked or walked, 37% would have taken a 
personal vehicle, 20% would have not made the trip, and the remaining 
10% would have taken carsharing or ridesharing services. These find
ings were in line with surveys conducted by other studies in terms of 
modes preferred in the absence of e-scooters. A study conducted in 
Raleigh, North Carolina (Hollingsworth et al., 2019) found that 49% 
would have biked or walked, 34% would have used a personal auto
mobile or ride-share service, and 7% of users reported that they would 
not have taken the trip otherwise, and 11% would have taken a public 
bus. Comparing these numbers with a study conducted in Portland, 
Oregon (Portland Bureau of Transportation, 2018), which shows 45% 
would have biked or walked, 36% would have used an automobile, 8% 
would not have taken the trip, and 10% would have used a bus or 
streetcar. 

In the case of locations where the e-scooters were picked up and 
dropped off, survey results found that 45% of responders select “near 
home” as the pick-up location, and 35% dropped off the e-scooters near 
“restaurants/shops”. The average trip distance was found to be within 
1–2 mi (47%) and trip duration between 5 and 20 min (80%). These 
survey results were found to be comparable with the findings obtained 
from temporal analysis of the trip data that resulted in an average trip 
distance of 1 mile and a trip of 12 min. These findings were found to be 
similar to findings reported by other studies based in the United States 
(Bai and Jiao, 2020). Noland (2019) based on an assessment of e-scooter 
tip patterns in Louisville, Kentucky found the average trip distance to be 
15.59 min and the average trip duration to be 1.33 miles. Similar find
ings were reported by Orr et al., 2019 based on Portland’s e-scooter trips 
found the average trip duration and distance to be 14 min and 1.7 miles, 
respectively. 83% of survey responders found the e-scooters to decrease 
their trip distance and/or their trip time, compared to 17% who found 
no decrease at all. Overall, the survey responses highlighted the fact that 
e-scooters were preferred for a variety of activities including travel to 
work/school, errands, and recreational purposes, and have reduced the 
use of personal vehicles and ridesharing, and walking especially for 
shorter distances and durations. 

3.3. Exposure assessment 

Based on the geospatial analysis of the e-scooter trips, high-density 
areas in the divisions of George, and Baker were selected for exposure 
assessment (Fig. 6 a & b). The case study covered an extent of 3.5mi by 
6mi (5.6 km to 9.6 km) and the e-scooter trip data in these areas 

Table 2 
Demographic Characteristics of Survey Responders in Comparison with the City 
of Austin.  

Demographic 
characteristics 

Categories Survey 
Response Rates 

City of 
Austin 

Gender (Above 18 
yrs) 

Male 56% 51% 
Female 44% 49% 

Age Group 18–25 years 22% 10% 
26–35 years 27% 29% 
36–45 years 31% 21% 
46–55 years 4% 15% 
> 56 years 16% 25% 

Race White or Caucasian 69% 50% 
Black or African 
American 

2% 7% 

Hispanic or Latino 7% 30% 
Asian or Asian American 13% 9% 
Others 9% 4% 

Education Level Less than high school 0%  
High School 11% 90% 54% 
Undergraduate degree 40% 
Master’s degree 33% 
Degree higher than a 
master’s degree 

16% 

Employment Status 

Student 13% 

Not Available 
Working part-time 7% 
Working full-time 71% 
Retired 9% 

Average Household 
Income 

$0–$24,999 6.5% 14% 
$25,000–$49,999 6.5% 18% 
$50,000–$74,999 13% 17% 
$75,000–$99,999 18% 13% 
$100,000–$124,999 16% 

18% $125,000–$149,999 13% 
$150,000 and up 27% 20%  
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accounted for 216,010 trips or 6% of the total dockless data in the period 
considered for the study. Based on the trip origin and destination, trip 
trajectories were generated by applying the Dijkstra algorithm in ArcGIS 
software. The algorithm breaks the network into nodes and develops the 
shortest path between the nodes based on constraints imposed such as 
avoiding freeways, divided highways, and roads that do not permit e- 
scooters (ArcGIS) (Fig. 6c). 

The traffic data corresponding to the travel network covering the 
case study extent consisted of link-level traffic volumes, speed, and 
roadway type. The annual average daily traffic (AADT) values for the 
links modeled in the study ranged from 13,979 to 202,376 with the 

higher AADT values concentrated at the links of Interstate 35 (I-35) and 
N-Mopac Expressway close to downtown and the intersection of US290 
and I-35. The AADT values were converted into hourly volumes using 
allocation factors obtained using regional information (Texas Commis
sion on Environmental Quality, 2015). The fleet mix also obtained from 
regional data consisted predominantly of passenger cars (70%), fol
lowed by passenger trucks (17%), and heavy-duty trucks (10%). Other 
inputs utilized for emission estimation consisting of vehicle age distri
bution, temperature and humidity, fuel supply, inspection and mainte
nance parameters, and vehicle fleet mix were obtained from the MOVES 
default database corresponding to Travis County where the City of 

Fig. 5. E-scooter survey responses. 
(Fig. 5 highlights the survey responses focused on e-scooter travel behavioral patterns corresponding to (a) factors that motivate people to use e-scooters, (b) usage 
patterns of other models (c) mode taken if e-scooter was not available to help assess the reduction in other modes due to e-scooter usage). 
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Austin is located. Based on these inputs, PM2.5 emission factors resulting 
from the vehicle’s running exhaust, crankcase running exhaust, brake, 
and tire wear were estimated using the MOVES model at an hourly 
averaging period for all roadway links. Emission factors were then 
normalized by the area of roadway links (in terms of grams/m2-second) 
and incorporated into AERMOD. 

The raw surface and upper meteorological data for the study region 
were obtained from Austin Bergstrom International Airport (Station ID: 
03904), and Corpus Christi upper air station (Station ID: 12924), 
respectively. The raw data corresponding to the year 2015 data (which 
was the latest available at the time of the study) was processed through 
the AERMET and AERSURFACE preprocessors in a format compatible 
with AERMOD. The details of meteorological data processing can be 
found in (Askariyeh et al., 2018). The roadway links in the network were 

characterized as a series of 4579 area segments Traffic-related pollutant 
dispersion follows a peaking pattern near the roadway sources before 
gradually falling off to the background concentration levels. To capture 
this spatial gradient, receptors were placed at a finer spacing of 25 m 
closer to the roadway links, and spacing is increased to 50 m, and 100 m 
with distance from the roadways. This set-up resulted in a total of 1507 
receptors placed at an average human breathing height of 1.8 m. The 
model set-up is shown in Fig. 6d. 

The spatial-temporal distributions of PM2.5 concentrations averaged 
at the census block level (Fig. 7) were developed for four time periods.2 

Fig. 6. Exposure assessment model set-up. 
(Fig. 6 consists of four components representing the process of model set-up for exposure assessment. Fig. 6a and Fig. 6b showcase the hot-spot locations of e-scooter 
trips that are selected for exposure assessment. Fig. 6c shows e-scooter trip trajectories generated using ArcGIS, and Fig. 6d presents the source and receptor 
characterization of the traffic roadway links in the hot-spot locations from which exposure levels experienced by the e-scooter users were calculated). 

2 Morning period corresponds to 6 am to 9 am, midday is considered from 9 
am to 4 pm, evening peak from 4 pm to 7 pm, and overnight from 7 pm to 6 am. 
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The overall concentration was found to range between 0.45 and 34.16 
μg/m3. The highest emitting links were the ones with the highest traffic 
volume and concentration was observed to gradually decrease with 
distance from the roadways. In terms of seasonal variation, higher 
concentrations were observed during the winter season and the lowest 
during summer due to stable atmospheric conditions, and less sunlight 
leading to reduced mixing and higher concentration during the late fall 
and winter seasons. A similar trend was observed with higher concen
trations observed during overnight and early morning periods. 

Exposure levels experienced during each e-scooter trip were calcu
lated based on time-weighted concentrations for each split segment of 
the trip trajectory. To match the spatial resolution of concentrations 
estimated at the census block, the e-scooter trip trajectories were split 
into different segments defined by the boundaries of the census blocks. 
Exposure for each trajectory split was obtained by weighing the 
pollutant concentration at the split location with the corresponding time 
spent at that location. This was done because the concentration levels 
vary based on the location and amount of time spent in that location. 
The process was repeated for all trips within the case study region for the 
period of analysis. Total exposure for a given trip was obtained by 
combining all split trajectories of the trip. 

Due to the huge number of trip trajectories over the analysis period, 
exposure assessment was conducted only for Spring 2018. The overall 
exposure levels (Fig. 8) were categorized by different periods for the 
spring season. The temporal variations in the exposure levels were found 
to follow the temporal variations in the concentration distribution with 

higher exposures observed during morning and evening periods. How
ever, it was interesting to note the opposite effect for midday (lower 
concentration but higher exposure due to higher number of trips) and 
overnight (higher concentration but lower exposure due to reduced 
trips) periods. Compared to the concentration distribution maps, expo
sure maps were more focused with higher exposure levels observed near 
roadway links with high traffic volumes and high e-scooter trips. These 
links correspond to the Central Austin area that contains the University 
of Texas campus, Hyde Park, Anderson, North Loop, Brentwood, and 
Allandale neighborhoods that house several shopping, restaurants, bars, 
and live music avenues. This highlights the importance of incorporating 
the location information of people in calculating their exposure rather 
than basing it on only concentration levels. 

4. Summary and conclusions 

The fourth generation of dockless mobility is competing to solve the 
long-standing first-last mile issue in populated urban areas. The avail
ability of high-resolution dockless mobility datasets provides the op
portunity to analyze millions of data records to evaluate the temporal 
and spatial variations of trips as well as to understand the TRAP expo
sure experienced by e-scooter users as they drive close to heavily traf
ficked roadways. A total of 4.1 million e-scooter trip data was extracted 
from the City of Austin dockless bike-share program and after removing 
the missing and invalid data records, the resulting dataset consisted of 
3.4 million data records. Based on the data analyzed, 56% of the entire 

Fig. 7. PM2.5 concentration heat map. 
Fig. 7a shows the spatial distribution of PM2.5 concentrations across the four seasons based on travel network and corresponding traffic activities in the case study 
region. Higher concentrations were observed during the late fall and winter seasons compared to lower concentrations during summer due to a combination of traffic 
activities and atmospheric conditions. Fig. 7b shows the hourly concentration distribution for the spring season (for which exposure assessment was conducted). 
Hourly distribution highlights higher concentrations during overnight and early morning periods compared to lower concentrations during midday hours due to 
stable atmospheric conditions. 
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scooter trips occurred during a period of 9 months (April to December) 
in 2018 and 44% occurred for three months (January to March) of 2019. 
This was attributed to the higher utilization rate (136% increase) of the 
e-scooters in the second year of introducing the e-scooter bike-share 
program in the City of Austin. 

The hourly variation of e-scooter trips shows the minimum trip count 
in the early morning (5:00–7:00 am) followed by the peaking of trips 
from 12 pm to 7 pm. The hourly variation of scooter trips was found not 
to follow the expected bimodal peaking (morning and evening periods) 
typically exhibited in urban traffic. A comparison of the scooter trip 

count data between weekdays and weekends shows a 23% more ten
dency to use e-scooters over the weekends. These findings were found to 
be comparable with findings obtained from a synthesis of the literature 
on the geospatial analysis presented by Foissaud et al., 2022 that found 
the peak usage to be during weekends and holidays during midday and 
evening periods. These results highlighted the fact that the e-scooters 
although sought to solve the first-last mile issue was being used pre
dominantly for other trips. These findings are in line with other studies 
(McKenzie, 2019) that found e-scooters to be predominantly used for 
errands, or recreational purposes rather than connecting to transit stops 

Fig. 8. Temporal and spatial distribution of PM2.5 exposure levels for the spring season. 
(Fig. 8 exhibits the temporal and spatial distribution of PM2.5 exposure levels experienced by e-scooter users in the case study region during the spring season. The 
distribution highlights higher exposure during midday and evening periods due to a combination of e-scooter trips, traffic activities, and meteorological conditions). 
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from home or work. 
Survey results ranked the trip length, connectivity to transit, 

congestion and parking issues, and pollution reduction as high factors 
that influenced the use of e-scooters. The survey found that e-scooters 
predominantly replace the personal vehicle (37%), walking or biking 
(33%), carsharing or ridesharing (10%), and the remaining 20% would 
have not made the trip. It was interesting to note that while the usage of 
personal vehicles and shared ridership reduced, transit usage remained 
the same despite having a new mode to help people connect to transit 
stops. The findings also highlight that although e-scooters reduce vehicle 
use, they also could have a negative impact on overall public health by 
replacing active modes such as walking or biking (Bishop et al., 2011; de 
Bortoli and Christoforou, 2020). 

An exposure assessment was conducted for a sample of e-scooter 
trips that occurred in Spring 2018. The exposure assessment was con
ducted through an integrated modeling approach combining the e- 
scooter trip routes, traffic emissions, meteorology, and pollutant 
dispersion. The dispersion model estimated increased PM2.5 concentra
tion in the fall and winter seasons during overnight and early morning 
periods due to reduced mixing and pollutant dispersion. The dynamic 
exposure levels were obtained by estimating the time-weighted con
centration computed for different split segments of the trip trajectory. 
Compared to the concentration estimates, exposure levels were different 
due to the route taken, and the time spent in different locations. The 
exposure levels obtained were found to follow the temporal distribution 
pattern of e-scooter usage and concentration levels with high exposure 
levels observed during midday (attributed to high trips), and evening 
(attributed to both high trips and concentration levels) periods. 

Limitations of the study include not evaluating the relationship be
tween the dockless trips and other points of interest (such as restaurants, 
shopping, etc.). The study was based on data collected during the early 
stages of introducing the dockless e-scooters in the City of Austin, and 
before the COVID-19 pandemic that might have altered the usage pat
terns. The AERMOD model used is a steady-state model that is capable of 
modeling only the dispersion of primary pollutants and not the sec
ondary pollutant formation or long-range transport of pollutants. The 
study only evaluated the exposure from traffic emissions and not the 
difference in emissions due to reduction in personal vehicle travel or 
shared ridership. The study also does not include the environmental 
impacts from manufacturing, electricity used to power the e-scooter, 
and disposal. To get a holistic picture of the environmental impacts of e- 
scooters, a complete wheel-to-well analysis incorporating the different 
aspects of e-scooters from the manufacturing of the scooters, power 
usage and impact on the electric grid, disposal or recycling, mode shift, 
and difference in emissions from other modes caused due to e-scooters is 
required. 

This is one of the early studies that focus on the topic of the inter
section between transport geography, environment, and health in an 
emerging mode of shared mobility. The results help in understanding the 
travel patterns of e-scooters, and their influence on the exposure levels 
experienced by the users. According to the survey and modeling results, 
e-scooter trips mostly replace walking for trips connecting to the transit 
stop, and personal vehicle for trips to and from home and work. By 
replacing walking, e-scooters could lead to a sedentary lifestyle leading 
to adverse health impacts including heart diseases, and diabetes. 
Alternatively, e-scooters reduce personal vehicle and shared ridership, 
however, the users are exposed to high levels of TRAP considering their 
peak usage during midday and evening periods due to the nature of the 
trips that they are replacing. In summary, based on the study findings, it 
seems like e-scooters may not be a sustainable means of transport 
because they are not used as a commute or last-mile solution, they 
replace trips that would otherwise have been made using active modes, 
and are exposed to direct vehicular exhaust as they are used for home-to- 
work trips. Local policymakers could develop policies that limit e- 
scooter usage during certain periods (off-peak periods when traffic 
volumes are lower) and restrict e-scooter access to roadways away from 

heavily trafficked roadways. Other incentives could include subsidizing 
transit costs for people using active modes or e-scooters to get to the 
transit stations. 
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