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Executive Summary 

Dockless mobility has been the biggest disruptive force in the shared mobility industry, solving the first-last mile 

issue. With high adoption levels combined with little to no regulation regarding usage, dockless bike and scooter 

users have been traveling alongside motorized vehicles, exposing them to major concerns. Specifically, users are 

exposed to high levels of traffic-related air pollution (TRAP) due to their direct exposure to vehicle exhaust. With a 

focus on e-scooter use, this study aimed to understand the spatial and temporal dimensions of this emerging 

transportation mode in terms of travel behavior patterns, geographical aspects of travel, interactions between the 

travel route taken and the existing vehicle traffic, and the resulting air pollution and exposure. 

The availability of high-resolution dockless mobility datasets provided the opportunity to analyze millions of data 

records to evaluate the temporal and spatial variations of e-scooter trips as well as to understand the TRAP 

exposure experienced by e-scooter users as they travel along heavily trafficked roadways. Data for 4.1 million e-

scooter trips was extracted from the City of Austin dockless bikeshare program. After removing any missing and 

invalid data records, the resulting dataset consisted of 3.4 million trips. Based on the data analyzed, 56 percent of 

all scooter trips occurred during a nine-month period from April to December 2018, and 44 percent occurred 

during a three-month period from January to March 2019. This increase in usage was attributed to the higher e-

scooter utilization rate (136 percent increase) in the second year after introducing the e-scooter bikeshare 

program in the city of Austin. 

The hourly variation of e-scooter trips showed the minimum trip count in the early morning (from 5:00 a.m. to 

7:00 a.m.) followed by the peak trip count from 12 p.m. to 7 p.m. The hourly variation of e-scooter trips did not 

follow the expected bimodal peaking pattern (morning and evening periods) typically exhibited in urban traffic. A 

comparison of the e-scooter trip count data between weekdays and weekends showed a 23 percent higher 

tendency to use e-scooters over the weekends. These results highlighted the fact that the e-scooters—although 

intended to solve the first-last mile issue—were being used predominantly for other trips. These findings are in line 

with other studies that found that e-scooters were predominantly used for errands or recreational purposes rather 

than connecting to transit stops from home or work. 

Survey results indicated that trip length, connectivity to transit, and congestion and parking issues ranked highest 

as factors influencing the use of e-scooters. The survey found that e-scooters were predominantly used to replace 

personal vehicles (37 percent), walking or biking (33 percent), and carsharing or ridesharing (10 percent); the 

remaining 20 percent of respondents would have not made the trip. It was interesting to note that while the usage 

of personal vehicles and shared ridership decreased, transit usage remained the same despite this new mode’s 

potential to help people connect to transit stops. Although e-scooters reduced vehicle use by about 47 percent, 

these findings suggested that they could also have a negative impact on overall public health by replacing active 

modes such as walking or biking. 

Spatial analysis of the e-scooter data identified the University of Texas campus and downtown Austin as areas of 

peak usage. Accordingly, the exposure assessment was conducted for a sample of e-scooter trips that occurred in 

spring 2018 in these areas. The exposure assessment was conducted through an integrated modeling approach 

combining e-scooter trip route, traffic emission, meteorological, and pollutant dispersion data. The dispersion 

model estimated increased fine particulate matter (PM2.5) concentrations in the fall and winter seasons during 

overnight and early morning periods due to reduced mixing and pollutant dispersion. The dynamic exposure levels 

were obtained by estimating the time-weighted concentrations computed for different split segments of the trip 

trajectory. Compared to the concentration estimates, exposure levels varied due to the route taken and the time 

spent in different locations. The exposure levels were found to follow the temporal distribution pattern of e-

scooter usage and concentration levels, with high exposure levels observed during midday (attributed to high trip 

counts) and evening (attributed to both high trip counts and concentration levels) periods. 



 

 
 

This effort reflects one of the earliest studies focused on the intersection between transport geography, 

environment, and health for an emerging mode of shared mobility. The results help in understanding the travel 

patterns of e-scooters and their influence on the exposure levels experienced by the users. Based on the combined 

modeling and survey findings, e-scooters may not be a sustainable means of transport because they are not being 

used for commuting or as a first-last mile solution. Although they reduce personal vehicle use, e-scooter users are 

exposed to high levels of TRAP, and they replace trips that would otherwise have been made using active modes 

such as walking and biking. In addition, these results combined with previous findings in literature suggested that 

unless there are efficient charging and recycling strategies, e-scooters may lead to overall higher lifecycle 

emissions. One limitation of this study included not evaluating the relationship between the dockless trips and 

other points of interest, such as restaurants, shopping, etc. In addition, this study was based on data collected 

during the early stages of introducing the dockless e-scooters in the city of Austin and before the COVID-19 

pandemic that may have altered the usage patterns. The American Meteorological Society/Environmental 

Protection Agency Regulatory Model (AERMOD) used in this study is a steady-state model capable of modeling 

only the dispersion of primary pollutants and not the formation of secondary pollutants or the long-range 

transport of pollutants. This study only evaluated TRAP exposure from current traffic emissions without accounting 

for the change in emissions due to the reduction in personal vehicle travel or shared ridership. This study also did 

not include the environmental impacts from the manufacture, operation (i.e., electricity production used to power 

the e-scooter), or disposal of e-scooters. To get a holistic picture of the environmental impacts of e-scooters, a 

complete wheel-to-well analysis incorporating the different aspects of e-scooter use—including the manufacture, 

power usage and impact on the electric grid, and disposal or recycling of e-scooters, as well as their effect on mode 

shift and emissions—is required. 
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Background and Introduction 

Bikeshare programs have grown rapidly in the recent decade, both in terms of the number of cities offering them 

and their technology. Bikeshare technology evolution can be broadly classified into four generations: 

1. The first generation consisted of docked bikes placed throughout an area that could be freely accessed by 

the public. 

2. The second generation consisted of coin-deposit systems at self-serving docking stations. 

3. The third generation consisted of information technology (IT)-based payment systems that used 

credit/debit cards to track usage. 

4. The current and fourth generation is based on smart mobility, combining dockless systems and cellular 

and global positioning system technologies. 

Smart mobility is a new and revolutionary way of thinking about how we get around with zero emissions, zero 

ownership, and zero accidents. Datasets related to smart dockless bikeshare mobility are increasingly available and 

serve as valuable sources to better understand populations’ behavior and mobility issues in urban areas (Shaheen 

et al., 2010). This fourth generation of dockless mobility has been the most prominent disruptive force in the 

bikeshare industry for solving the first-last mile issue. Dockless bikes and scooters can be rented directly through 

the user’s mobile phone application, allowing the user to travel the city streets at around 15 mph (6.7 m/sec). In 

2018, electric scooters (e-scooters) replaced pedal-bikes and e-bikes and became the preferred vehicle for 

dockless vendors (National Association of City Transportation Officials [NACTO], 2018). According to NACTO, cities 

such as Austin and Santa Monica were some of the earliest adopters of e-scooter programs; such programs have 

grown in number, making over 85,000 e-scooters available for public usage throughout the country. Early studies 

on both docked and dockless bikeshare in the District of Columbia, conducted by the Virginia Polytechnical 

Institute and State University (Virginia Tech), revealed a more accessible, racially diverse set of riders, a higher 

proportion of women riders, and a lower household income for dockless riders than docked users (Virginia 

Polytechnical Institute and State University, 2018). This study also showed that bikesharing was much higher in the 

afternoon than in the morning, and dockless ridesharing yielded a more geographically dispersed pattern. Li et al. 

(2019) recently analyzed the operating characteristics of a dockless bikesharing system and its activity pattern near 

metro stations in Nanjing, China (Li et al., 2019). Their analyses revealed different weekend and weekday patterns 

with two peaks (morning and evening) on weekdays, consistent with the Virginia Tech study. An analysis of 

dockless bikesharing in Singapore also revealed two peaks in the hourly number of trips and a lower number of 

trips during weekdays compared to weekends (Xu et al., 2019). A related analysis of the hourly number of trips 

using dockless bikesharing in Nanchang, China, also showed two daily peaks and found that dockless bike demand 

increased with the presence of a public transportation stop (e.g., a metro station) (Yang et al., 2019). Contrary to 

the findings from Yang et al. (2019), a comprehensive study on the temporal and spatial variation of dockless e-

scooters in Washington, D.C., revealed that these e-scooters were used mainly for leisure or recreational purposes 

in addition to commuting to and from work (McKenzie, 2019). Unlike the findings from Li et al. (2019) and Yang et 

al. (2019), this study showed that the hourly distribution of e-scooters followed a unimodal peaking pattern 

(McKenzie, 2019). 

Most studies on e-scooters have focused on evaluating their travel behavior, leaving a knowledge gap regarding 

other aspects of e-scooter use. For example, pollutant exposure levels may be of significant concern because the 

majority of e-scooter users travel along major highways. Many cities lack bike lanes, so users travel on sidewalks or 

shared lanes with motorized vehicles, decreasing their safety and increasing their exposure to traffic-related air 

pollution (TRAP). When operated on the sidewalk, e-scooter users risk running into and injuring pedestrians, 

especially because there are often no requirements for limiting travel speed (Pyzyk, 2018). Although e-scooters are 

perceived to be an environmentally friendly alternative compared to other forms of transportation, exposure to 

TRAP is an essential consideration—e-scooter users are vulnerable to harmful air pollutants due to their direct 

https://cw33.com/2018/07/13/dallas-man-nailed-by-lime-scooter-driver-while-walking-on-the-sidewalk/
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exposure to vehicular exhaust. Further, due to the lack of regulations, these users are traveling along major 

arterials with or without designated bike paths, thereby exposing them to high emission levels from motorized 

vehicles. Vehicles emit complex mixtures of pollutants that are found to contribute to various adverse health 

effects (Mukherjee & Agrawal, 2017; Health Effects Institute, 2010). These adverse health effects cover a variety of 

morbidity and diseases including but not limited to premature mortality; cardiovascular, respiratory, and birth and 

developmental effects; and cancer (Adar & Kaufman, 2007; Pearson et al., 2000; Wilhelm & Ritz, 2003). These 

health effects are exacerbated for e-scooter users when commuting next to major arterials because they are 

exposed for longer periods of time (travel times are longer for e-scooter users than vehicle commuters), and 

pollutant concentrations tend to peak near roadways (de Hartog et al., 2010; Hatzopoulou et al., 2013). 

While several studies have evaluated exposure levels for bicyclists and pedestrians (Boriboonsomsin et al., 2017; 

Dons et al., 2011; Hatzopoulou et al., 2011; Lefebvre et al., 2013), limited studies have evaluating e-scooter users 

and their exposure levels because e-scooters are new, and their usage patterns are unknown. Studies have found 

that the overall environmental impact caused by e-scooters was lower than the other forms of transportation that 

they are replacing (Hollingsworth et al., 2019; Moreau et al., 2020). A study by Hollingsworth et al. (2019), based 

on a comparative evaluation of lifecycle environmental impacts, found that e-scooters were better than personal 

vehicles but worse than buses with higher ridership. This study’s lifecycle global warming analysis found that the 

highest environmental impacts originated from the materials and manufacturing of the e-scooters (50 percent), 

followed by the transport of e-scooters to overnight charging stations (43 percent). These impacts decreased with 

the use of fuel efficient vehicles and fewer trips to collect e-scooters. 

Our study aimed to understand the travel behavior patterns and exposure levels experienced by a sample of e-

scooter users based on a predictive exposure modeling system for the city of Austin. The travel behavior patterns 

were evaluated through a combination of geospatial analysis of 3.4 million e-scooter trips in 2018 and a brief 

online survey launched in collaboration with the City of Austin. Analysis of these data helped to understand the 

current usage patterns of e-scooters, as well as locations and time periods of peak usage. The predictive modeling 

system evaluated exposure levels by integrating traffic activity, emissions, dispersion modeling, and spatial 

interpolation techniques, with e-scooter trip trajectories based on geographic information systems. An exposure 

concentration map for fine particulate matter (PM2.5) was developed based on a sample of e-scooter routes for 

different time periods in the spring season. The finding helped to highlight the hot spots for peak exposure and 

variation in exposure levels during different time periods, depending on usage levels and pollutant dispersion. The 

modeling system and resultant findings can be used to facilitate the planning of city transportation infrastructure 

and commuter decision-making regarding route and time choice. Section 2 provides an overview of this study’s 

methods, data collection, and analysis. Section 3 presents the case study results. Study conclusions are presented 

in Section 4. 

Materials and Methods 

Study Extent 
The City of Austin launched a dockless mobility (micromobility) pilot program in early 2018. The Austin 

Transportation Department expanded the scope of this pilot program to include dockless scooters and e-scooter 

operators. Based on information obtained from the City of Austin at the time of this study, there were 15,350 

scooters and 2,050 bikes available across the Austin area provided by eight operators (Bird, JUMP, Lime, Lyft, OjO, 

Skip, Spin, and VeoRide). Dockless mobility data (bikes and e-scooters)—providing information about citywide 

usage, location, and other characteristics of dockless bikes and scooters—were obtained from the City of Austin. 

The anonymized data included information related to dockless vehicle trips including start and end points of trips, 

devices used, and distance traveled, as well as monthly summary statistics of the trips made (City of Austin, 2018). 

Figure 1 shows the key variables included in the dataset. The accessed dataset included 4.1 million records for the 

dockless mobility system in Austin between March 2018 and early April 2019. The extracted data had a one-minute 
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resolution, and location was identified in terms of geographic coordinates (latitude and longitude). The extracted 

data were analyzed for missing records and inaccurate information. Records that had invalid latitude or longitude 

(i.e., associated values were far away from the Austin area, possibly in other states) or had unrealistic trip 

distances or durations (e.g., 105,219 m or 419,255 sec) were removed. Data were then filtered to include only e-

scooter trips with a duration less than 10,000 s and a distance less than 25 km. This process resulted in the removal 

of 15 percent of the dataset. The final dataset consisted of 3,462,084 records that were analyzed for this study. 

 

Figure 1. Accessed dockless mobility data structure with 20 variables per trip in Austin. 

Survey 
A brief online survey designed to understand the usage patterns of e-scooters was launched through social media 

and newsletters. The survey consisted of 17 questions categorized as: (1) demographic questions related to 

gender, age, employment, education, and household income; (2) general e-scooter questions related to 

motivational factors for e-scooter use, use of other modes, and e-scooter use frequency and purpose; and 

(3) questions regarding their most recent e-scooter trip including pickup/drop-off location, recent travel patterns, 

time and duration, and use of an alternative mode. The survey was administered through the City of Austin and 

Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH) newsletters and social 

media from December 2019 through March 2020. A total of 100 users completed the survey with a response rate 

of 98 percent. The survey was previously reviewed and approved by the Texas A&M University Institutional Review 

Board (IRB#: IRB2019-0878). Figure 2 shows a snapshot of the online survey; the full survey questionnaire is 

included in the Supplemental Material section. 
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Figure 2. Snapshot of the online survey. 

Exposure Assessment 
Figure 3 shows the modeling framework and key components involved in the exposure assessment. The modeling 

began with the assembly of base imagery of the case study region. The e-scooter trips made within the case study 

region were extracted from the City of Austin database. The key data parameters included e-scooter trip start and 

end locations, distance, and duration. Next, the traffic activities (traffic volume, speed, and vehicle fleet mix) on 

the major roadways within the case study region were extracted from the regional travel demand model (TDM). 

The U.S. Environmental Protection Agency’s MOtor Vehicle Emissions Simulator (MOVES, version MOVES2014b) 

was utilized to estimate emissions (U.S. Environmental Protection Agency, 2023a). The MOVES combines site-

specific traffic activity data with other local specific information including age distribution, temperature and 

humidity, fuel supply, and inspection and maintenance parameters. The estimated emissions from the MOVES 

were then incorporated into an air dispersion model to calculate the pollutant dispersion in the atmosphere based 

on meteorological and land use parameters. 
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Figure 3. Modeling framework. 

The American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) used in this 

study to simulate air dispersion relied upon the regulatory approved AERMET and AERSURFACE preprocessor 

models to process the meteorological (MET) and land-use (SURFACE) data, respectively (U.S. Environmental 

Protection Agency, 2023b). The AERMOD calculates pollutant (PM2.5) concentrations from roadway traffic by 

characterizing the roadway as a series of area sources defined based on the traffic activity, geometry, and area of 

the roadway link. The AERMOD calculates the resulting PM2.5 concentrations at discrete receptor locations placed 

throughout the modeling domain at hourly averaging periods. A detailed explanation of the different components 

involved in the modeling framework can be found in Vallamsundar et al. (2016). The resulting spatial and temporal 

distributions of PM2.5 concentration were averaged at the census block level. Next, personal exposure levels 

experienced by e-scooter users were calculated based on the route taken, time of day, and duration. According to 

the World Health Organization (1999), personal exposure for an individual at location x, y, z is calculated by 

determining the concentration the individual is exposed to at that location and time, combined with the amount of 

time spent in that location. For e-scooter users commuting from location A to location B, personal exposure was 

calculated by determining the time-weighted concentrations at both locations based on the concentrations and 

time spent at each location. The total population exposure was obtained by summing the user’s exposure levels. 

Early studies (Duan, 1991; Ott, 1982) mathematically formulated this relationship as follows: 

𝐸 = ∫𝐶(𝑡)𝑑𝑡 

where exposure, E, is measured as the product of time, t, and concentration, C, at different locations. Based on this 

formulation, the e-scooter trip trajectories were split into different segments by the boundaries of the census 

blocks. Exposure for each split trajectory was calculated by assigning the PM2.5 concentration for each census block 

based on the fraction of time spent in the census block. The total exposure for any given trip was obtained by 

combining all split trajectories of the trip. 
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Results and Discussion 

Geospatial and Temporal Analysis 
Figure 4 shows the spatial distribution of the e-scooter trips. This figure highlights a high density of or high 

utilization rate for e-scooter trips in the downtown area and near the University of Texas-Austin campus. These hot 

spots are important because the exposure assessment (described later in the Results and Discussion section) was 

performed for a sample of e-scooter trips in these areas. The temporal analysis consisted of evaluating the hourly, 

monthly, and seasonal variations in the e-scooter data from April 2018 to March 2019.  

 

Figure 4. Heat map of e-scooter trip starts. 

Figure 5 (Panel A) shows a general increase in trips from August 2018 to March 2019. The slight decrease in 

scooter trips in December 2018 and January 2019 may be attributed to the holiday season and lower 

temperatures. The peaking of trips in March 2019 could be attributed to the spring season and events such as the 

Circuit of The Americas (March 1–3, 2019) the South by Southwest (SXSW) Music, Film, and Interactive Conference 

and Festival (March 8–17, 2019); and Rodeo Austin (March 16–30, 2019). Figure 5 (Panel B) shows the hourly 

variations of trip counts for spring (March–May), summer (June–August), fall (September–November), and winter 

(December–February). A similar trend in the distribution of e-scooter counts was observed for each season, with 

lower counts observed in the summer. Typically, e-scooter counts were found to increase starting at around 

7 a.m., peak from noon to 7 p.m., and decrease at around 10 p.m. The diurnal pattern of the hourly number of e-

scooter trips had only one predominant peak for all seasons, which differs from the bimodal (morning and 

evening) peak demand of the typical urban traffic. This divergence from the typical urban traffic behavior indicated 

that e-scooters were not being used to only meet first-last mile demands (McKenzie, 2019; Virginia Polytechnical 

Institute and State University, 2018) but instead were used mostly for other purposes (i.e., errands, directly 

connecting work to home, and recreational). 
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Figure 5. Temporal variations in e-scooter count data. 

Figure 6 shows the variations in average e-scooter trip distances and durations over different periods and seasons. 

The average duration (sec) and distance (m) of e-scooter trips was found to be 687 sec (11.45 min) and 1,495 m 

(0.93 mi), respectively. Sixty-seven percent of e-scooter trip counts occurred during weekdays and 33 percent 

occurred during weekends. The proportions of weekdays and weekend days per week (5/7=71 percent weekdays, 

2/7=29 percent weekends) were used to normalize these trip count results based on the following factors: 

67 percent/71 percent=0.94 for weekdays and 33 percent/29 percent=1.16 for weekends. These results showed a 

23 percent higher tendency to use e-scooters over the weekends. The higher trip durations and distances observed 

during the summer could be attributed to warmer temperatures and summer school breaks.
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Figure 6. Variations in e-scooter trip distances and durations.
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Survey Results 
Table 1 summarizes the demographic characteristics of the survey respondents. Predominant survey respondents 

were male, White or Caucasian, 18–45 years of age, in possession of an undergraduate degree or higher 

(89 percent), and working full-time (71 percent). Respondents were asked to rank factors that influenced their 

decision to ride an e-scooter including trip length, connectivity to transit, reduction in air pollution, health 

concerns, cost, ease of access, congestion and parking issues, and being a scooter enthusiast. The most common 

factors influencing their use of e-scooters were trip length (50 percent), connectivity to transit (46 percent), and 

congestion and parking issues (31 percent), as shown in Figure 7. The next question sought to understand the 

change in usage frequency of other transportation modes—including personal vehicles, walking, personal bikes or 

scooters, carsharing, ridesharing, and transit—as a result of e-scooter use. Respondents were asked how their e-

scooter use affected their use of other modes, on a scale of much more often to much less often. Figure 8 shows 

that personal vehicles (50 percent) and ridesharing (53 percent) were used much less often and somewhat less 

often due to e-scooter use; transit usage remained the same (49 percent). 

Table 1. Demographic Characteristics of Survey Respondents 

Demographic Characteristics Categories Response Rates 

Gender Male  56% 

Female 44% 

Age Group 18–25 years 22% 

26–35 years 27% 

36–45 years 31% 

46–55 years 4% 

>56 years 16% 

Race White or Caucasian 69% 

Black or African American 2% 

Hispanic or Latino 7% 

Asian or Asian American 13% 

Others 9% 

Education Level Less than high school 0% 

High school 11% 

Undergraduate degree 40% 

Master’s degree 33% 

Degree higher than a master’s degree 16% 

Employment Status Student 13% 

Working part-time 7% 

Working full-time 71% 

Retired 9% 

Average Household Income $0–$24,999 6.5% 

$25,000–$49,999 6.5% 

$50,000–$74,999 13% 

$75,000–$99,999 18% 

$100,000–$124,999 16% 

$125,000–$149,999 13% 

$150,000 and up 27% 
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Figure 7. Factors influencing e-scooters use. 

 

Figure 8. Change in use of other transportation modes due to e-scooter use. 

The types of trips made using e-scooters were classified as: (1) trips connecting to a bus/train stop, (2) trips 

connecting home and work or school, and (3) errands or nonwork trips. Based on the survey responses, 13 percent 

used an e-scooter to connect to a bus/transit stop, 43 percent used an e-scooter to connect home and 

work/school, and 44 percent used an e-scooter for errands or nonwork trips. Respondents were asked which 

alternate mode they would use for these trips if an e-scooter was not available. Figure 9 shows that walking was 

preferred for trips connecting to a bus/transit stop (33 percent); personal vehicles were preferred for trips 

connecting home and work/school (43 percent) and errands or nonwork trips (39 percent). Regarding e-scooter 

pickup/drop-off locations, 45 percent of respondents selected near home as the preferred pickup location and 

30 percent selected near restaurants/shops as the preferred drop-off location. Figure 10 shows the average e-

scooter trip distances and durations reported by survey respondents. The predominant average distance and 

duration was 1–2 mi (47 percent) and 5–20 mins (80 percent), respectively. These survey results were similar to 

findings obtained from a dockless data analysis performed by the City of Austin. In conclusion, 83 percent of survey 

respondents found that the use of e-scooters decreased their trip distance and/or their trip time, compared to 

17 percent of respondents who found no decrease at all. 
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Figure 9. Mode taken if e-scooter option was not available. 

 

Figure 10. E-scooter trip distances and durations. 

Exposure Assessment 
Based on the geospatial analysis of the e-scooter trips described previously in the Geospatial and Temporal 

Analysis section, high-density areas of e-scooter trips in the George and Baker divisions, as shown in Figure 11, 

were selected for exposure assessments. The case study covered an extent of 3.5 mi by 6 mi, and the e-scooter trip 

data in these areas accounted for 216,010 trips or 6 percent of the total dockless data obtained from the City of 

Austin. As a next step, traffic activity data consisting of link-level traffic volumes, speeds, roadway types, and area 

types corresponding to the case study region were obtained from the Austin Metropolitan Planning Organization’s 

TDM. In addition to traffic activity, other inputs utilized for emission estimation included case study specific vehicle 

age distributions, temperature and humidity values, fuel supplies, inspection and maintenance parameters, and 

vehicle fleet mixes for four seasons and four daily time periods (morning peak, evening peak, midday, and 

overnight) in the spring only. Based on these inputs, the MOVES estimated PM2.5 emissions for all emission 
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processes (running exhaust, crankcase running exhaust, and brake and tire wear) at hourly averaging periods for all 

roadways. The emissions by roadway link, time period, and season produced by the MOVES were incorporated 

into the air dispersion model (AERMOD) to estimate PM2.5 concentrations. 

 

Figure 11. Focused case study area for exposure assessment. 
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Raw surface and upper meteorological data for the case study region were obtained from the Austin-Bergstrom 

International Airport and Corpus Christi upper air station, respectively. The raw data were then preprocessed by 

the AERMET and AERSURFACE models to produce a format compatible with the AERMOD. This meteorological 

data processing is detailed in Askariyeh et al. (2018). The roadway links in the case study area were characterized 

as a series of 4,579 area segments in the AERMOD. The PM2.5 concentrations were estimated at 1,507 receptors, 

with finer spacing closer to the roadways and coarser spacing away from the roadways. The resulting PM2.5 

concentrations were averaged at the census block levels for four different seasons and four daily time periods1 in 

the spring season only, as shown in Figure 12. The average hourly PM2.5 concentrations ranged between 0.5 and 

12.3 µg/m3. The seasonal variations showed the highest concentrations during the winter season and the lowest 

concentrations during the summer season. These findings are in line with previous studies that reported higher 

concentrations due to stable atmospheric conditions and less sunlight, leading to reduced mixing of pollutants and 

higher concentrations during the late fall and winter season (Askariyeh et al., 2018; Vallamsundar et al., 2016). A 

similar trend was observed in the concentration heat map for different daily time periods; higher concentrations 

were observed in the overnight and early morning periods due to reduced sunlight and pollutant dispersion. 

Due to the huge number of trip trajectories for the entire period of analysis, exposure assessments were 

conducted only for spring 2018. Exposure to PM2.5 concentrations was estimated by combining the temporal and 

spatial distribution of PM2.5 concentrations with the trip trajectories of e-scooter users. The trajectories were 

divided into segments based on the census block boundaries. Exposure experienced during an e-scooter trip was 

determined using the time-weighted concentrations computed for different split segments of the trip trajectory, as 

described previously in the Materials and Methods section. This process was repeated for all trips within the case 

study region for the period of analysis. Figure 13 shows the overall exposure levels categorized by the different 

daily time periods for the spring season. Exposure levels ranged from 1 to 30 µg/m3 and were higher during the 

midday and evening periods and near heavily trafficked roadways. Temporal variations in exposure levels followed 

the temporal variations in concentration distributions, except for during the midday period. A possible explanation 

for the high midday exposure levels could be the high number of trips during the midday period, as shown 

previously in Figure 5. Similarly, exposure levels for the overnight period were significantly lower compared to 

other periods. Although concentration levels were higher during the overnight period, the low number of trips 

caused the overall exposure levels to remain lower. Th variations between concentrations and exposures highlights 

the importance of incorporating real-world commuting patterns of people when assessing their exposure rather 

than using ambient concentrations as a surrogate. 

 
1 The morning period was 6–9 a.m., the midday period was 9 a.m.–4 p.m., the evening period was 4–7 p.m., and the overnight 

period was 7 p.m.–6 a.m. 
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Figure 12. Heat map of PM2.5 concentrations. 
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Figure 13. Temporal and spatial distributions of exposure levels. 
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Conclusions 

The fourth generation of dockless mobility is striving to solve the long-standing first-last mile issue in populated 

urban areas. The availability of high-resolution dockless mobility datasets provides the opportunity to analyze 

millions of data records to evaluate the temporal and spatial variations of trips and to understand the TRAP 

exposure experienced by e-scooter users as they travel near heavily trafficked roadways. Data containing 

4.1 million e-scooter trips were extracted from the City of Austin’s dockless bikeshare program dataset. After 

removing any missing and invalid data records, the resulting dataset consisted of 3.4 million e-scooter trips. Based 

on the data analyzed, 56 percent of all scooter trips occurred during a nine-month period (from April to December) 

in 2018 and 44 percent occurred during a three-month period (from January to March) in 2019. These increased 

trips (136 percent increase) were attributed to the higher utilization rate of e-scooters in the second year after 

introducing the e-scooter bikeshare program in the city of Austin. The hourly variations of e-scooter trips showed a 

minimum trip count in the early morning (from 5 a.m. to 7 a.m.) followed by a maximum trip count from 12 p.m. to 

7 p.m., which then decreased until 5 a.m. The hourly variations of scooter trips did not follow the expected 

bimodal peaking (morning and evening periods) typically exhibited in urban traffic. Comparisons of e-scooter trip 

count data between weekdays and weekends showed a 23 percent higher tendency to use e-scooters over the 

weekends. 

Survey respondents ranked trip length, connectivity to transit, and congestion and parking issues as important 

factors influencing their use of e-scooters. Survey respondents used e-scooters mostly to replace their use of 

personal vehicles for trips connecting home and work/school (43 percent) and for nonwork or errand trips 

(39 percent), and walking (33 percent) for trips connecting home/work and transit. It is interesting to note that, 

while the usage of personal vehicles and shared ridership decreased, transit usage remained the same despite this 

new mode’s ability to help people connect to transit stops. These survey results, along with the analysis of e-

scooter data, highlighted the fact that e-scooters—although intended to solve the first-last mile issue—are being 

used predominantly for other trips. Spatial analysis of the e-scooter data identified the University of Texas-Austin 

campus and downtown Austin as areas of peak usage. Accordingly, exposure assessments were conducted for a 

sample of e-scooter trips that occurred in spring 2018 in these hot spots. Exposure assessments were conducted 

through an integrated modeling approach that combined the trip routes taken by e-scooter users and TRAP 

exposure levels caused by vehicular traffic. The air dispersion model found high PM2.5 concentrations during the 

fall and winter seasons (due to reduced mixing and pollutant concentrations) and during overnight and early 

morning periods. Dynamic exposure levels were obtained by estimating the time-weighted concentration 

computed for different split segments of a trip trajectory. Compared to the concentration estimates, exposure 

levels differed because the route taken and the time spent in different locations were taken into account. 

Exposure levels followed the temporal distribution patterns of e-scooter usage and concentration levels, with high 

exposure levels observed during midday (attributed to high numbers of trips) and evening (attributed to both high 

numbers of trips and concentration levels) periods. 

This study is one of the earliest studies targeting a new mode of emerging disruptive transportation. These findings 

help to understand the travel patterns of e-scooters and their influence on the exposure levels experienced by 

users during their commute. Because these e-scooters were predominantly rented for other nonwork/errand trips 

during off-peak periods, user exposure levels were lower than if they were used solely for connecting work/home 

and transit during peak hours. One limitation of this study included not evaluating the relationship between the 

dockless trips and other points of interest, such as restaurants, shopping, etc. In addition, this study was based on 

data collected during the early stages of introducing the dockless e-scooters in the city of Austin and before the 

COVID-19 pandemic that might have altered the usage patterns. The AERMOD used in this study is a steady-state 

model capable of modeling only the dispersion of primary pollutants and not the formation of secondary 

pollutants or the long-range transport of pollutants. This study only evaluated TRAP exposure experienced by e-

scooter users from current traffic emissions without accounting for the change in emissions due to the reduction in 
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personal vehicle travel or shared ridership. This study also did not include the environmental impacts from the 

manufacture, operation (i.e., electricity used to power the e-scooter), or disposal of e-scooters. To get a holistic 

picture of the environmental impacts of e-scooters, a complete wheel-to-well analysis incorporating the different 

aspects of e-scooter use—including the manufacture, power usage and impact on the electric grid, and disposal or 

recycling of e-scooters, as well as their effect on mode shift and emissions from other modes—is required. 

Outputs, Outcomes, and Impacts 

Research Outcomes 
A paper based on this study was accepted for presentation at the 2021 CARTEEH Symposium. A journal paper 

based on this study is currently under preparation. 

Technology Transfer Outputs  
Relevant project datasets (appropriately anonymized) will be made available on the CARTEEH Data Hub. The 

research team also capitalized on opportunities for information sharing and technology transfer with stakeholders 

in Austin and presented key information about the project to the City of Austin.  

Education and Workforce Development Impacts 
A Ph.D. student was involved in the data analysis, literature review synthesis, manuscript writing, and 

documentation. 
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Supplemental Information: Online Survey 

 

 
 
Dockless Scooter Survey 
 
You are invited to join our dockless scooter research study!  
 
What is the purpose of this study?  To understand the usage patterns of e-scooters. The patterns will help us in 
assessing the air pollution levels for scooter users as they drive along major roadways.  
 
Who can take this survey? You are invited because you live in our study area and have used a dockless scooter. You 
must be 18 years of age or older to participate. To participate, please check your eligibility by answering the 
following question under “Informed Consent” 
 
Participation: The survey consists of 17 questions and is designed to be completed within 10 minutes. 
 
Risks: These activities will not pose any risks to you. You can skip any question you do not wish to answer or exit 
the survey at any point.  
  
Benefits: There are no direct benefits, nor any payment provided for participating in this study.  
  
Privacy: The survey does not collect any personal information that can identify you. You can view the survey host’s 
privacy policy at https://www.surveymonkey.com/mp/legal/privacy-policy/. 
  
Contact Information: You may contact the study coordinator, Dr. Suriya Vallamsundar, at 1-972-994-2209 or s-
vallamsundar@tti.tamu.edu for any questions related to the research study. You may also contact the Human 
Research Protection Program at Texas A&M University by phone at 1-979-458-4067, toll-free at 1-855-795-8636, or 
by email at irb@tamu.edu for the following. 
- additional help with any questions about the research 
- voicing concerns or complaints about the research 
- obtaining answers to questions about your rights as a research participant 
- concerns in the event the research staff could not be reached 
 
IRB Number:  
IRB Approval Date:  
 
Thank you, in advance, for taking part in the study! 
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Informed Consent 
If you want a copy of this consent for your records, you can print it from the screen 
If you wish to take part, please click the “I Agree” button and you will be taken to the survey. Clicking on the "I 
Agree" button below indicates that:  
You agree to take part in the survey 
You are at least 18 years of age  
You have used a dockless scooter in Austin 
If you do not wish to take part in the study, please exit survey by clicking on the "I Disagree" button. 
 I Agree 
 I Disagree 
 
Questions About Yourself 
 
What is your gender? 
  Male       Female       Prefer not to answer  
 
What is your age group? 
  18-25 years 
 26-35 years 
 36 – 45 years 
 46 – 55 years 
 > 56 years 
 Prefer not to answer 
 
What is your highest educational level? 
 Less than high school 
 High school 
 Undergraduate degree 
 Master’s degree 
 Degree higher than a master’s degree 
 Prefer not to answer 
 
Please describe your race/ethnicity 
 White or Caucasian 
 Black or African American 
 Hispanic or Latino 
 Asian or Asian American 
 American Indian or Alaska Native 
 Native Hawaiian or Pacific Islander 
 Other 
 Prefer not to answer 
 
What is your employment status? 
 Student 
 Working part-time 
 Working full-time 
 Retired 
 Prefer not to answer 
 
What is your average household income? 
 $0-$24,999 
 $25,000-$49,999  
 $50,000-$74,999  
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 $75,000-$99,999 
$100,000-$124,999 
 $125,000-$149,999 
 $150,000 and up 
 Prefer not to answer 
 
B. Questions about E-scooters in General 
 
To what extent would the following factors ENCOURAGE you to use the e-scooters? Select all that apply. 

 Strongly 
Agree 

Agree Neutral Disagree Strongly 
Disagree 

No 
Opinion 

Connect home/work/school to 
transit stop (bus/rail) 

      

Trip length (e.g., my trip is too 
short to drive but too long to 
walk) 

      

Fitness/riding in open air       

Reduce pollution from vehicles       

Driving in Austin became more 
difficult (congestion, parking 
etc.) 

      

Cheaper than taking other 
modes 

      

Easy access compared to other 
modes 

      

Excited to try a new mode        

Interest in Scooters (bicycles 
don’t work because of physical 
ability, attire etc.) 

      

Others        

 
Because of using the e-scooters in the last 30 days, how much more or less often do you use each of the 
following transportation modes? Select all that apply. 

 Much less 
often 

Somewhat 
less often 

About the 
same 

Somewhat 
more often 

Much 
more 
often 

N/A or 
never used 

Personal Vehicle       

Transit (rail/bus)       

Taxi/Uber/Lyft etc.       

Carsharing (e.g. Zipcar)       

Personal Bike/Scooter       

Walk       

Others        

 



 

24 

Which of the following best describes your riding frequency and purpose for using the e-scooters in the last 30 
days? Select all that apply. 

 Everyd
ay 

A few 
times 
per 
week 

Once a 
week 

Less than 
once a 
week but 
more than 
once a 
month 

Once a 
month 

No 
activity 

Connect to Bus or Train stop       

Trips connecting Home to Work  
      

Trips connecting Home to School  
      

To run Errands/ Restaurants/ Shops       

Other        

 
C. Questions about your Most Recent Dockless Scooter Trip  
 
Thinking about your most recent dockless scooter trip, where did you pick up and drop-off your dockless 
scooter? 

 Near 
Home 

Near  
Work  

Near 
School 

Transit 
Stop 
(Bus/ 
Train) 

Restaurant
s/Coffee 
Shops 

Shops 
and 
Retail 

Parks/ 
Trails 

Pick-Up        

Drop-off        

 
Identify your most recent travel pattern using the dockless scooter 
 Connect to Bus or Train stop 

 
 
 Trips Connecting Home to Work 

 
 Trips Connecting Home to School 
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 Errands/ Non-work trips 

 
 Others 
 
Thinking about your most recent dockless scooter trip, which mode of transport would you have taken had e-
scooters not existed? 
 

 Personal 
Vehicle 

Taxi/ 
Uber/ Lyft 

Carsharin
g  

Personal 
Bike/ 
Scooter 

Walk Not made 
the trip 

Connect to bus or train stop       

Trips to/from work only       

Errands/non-work trips       

Others (please specify):        

 
What times-of-the-day did you travel during your most recent dockless scooter trip? 
 7 - 10 AM 
 10AM - 1PM 
 1 - 5PM 
 5 – 8PM 
 8PM - 7AM 
 
How far did you travel during your most recent dockless scooter trip? If not sure, provide your best estimate. 
 Less than 0.5 mile 
 0.5 – 1 mile 
 1 – 2 miles 
 2 – 3 miles 
 > 3 miles 
 
How many minutes did your most recent dockless scooter trip take? If not sure, provide your best estimate. 
 Less than 5 minutes 
 5-10 minutes 
 10-20 minutes 
 20-30 minutes  
 More than 30 minutes 
 
Do you think using the dockless scooter at the start or end of your most recent trip significantly decreased the 
trip time or distance? 
 Yes, trip time decreased 
 Yes, trip distance decreased 
 Yes, decrease in both 
 No decrease at all 


