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Executive Summary 
Performance metrics to quantify traffic-related air pollutants and exposure disparities are critical for identifying 
disadvantaged populations and developing clean air policies. Existing screening tools generally estimate the overall 
ambient pollutants or traffic density at the census tract level or at a larger grid level. However, these tools do not 
reflect how much of the emissions actually reach and are inhaled by the localized population.  

This study attempts to develop a health risk metric to quantify the inhalation of traffic-related air pollutants at a 
finer geographic level. In this study, northern Orange County and western Riverside County in California are 
selected as the study area. The concentration of particulate matter 2.5 microns or less in width (PM2.5) and the 
cancer risks based on 9-year exposure to traffic-related exhaust diesel PM2.5 are assessed at the census block level. 
The Orange County blocks generally have higher primary traffic-related PM2.5 concentration than the Riverside 
County blocks do. Within selected Orange County blocks, the gasoline and diesel PM2.5 concentrations are 
comparable. However, within selected Riverside County blocks, the average diesel PM2.5 concentration is slightly 
higher than the average gasoline PM2.5 concentration.  

The estimated cancer risks show that to limit cancer risks to within the 75th percentile (14.5 in 1 million) of the 
study area, a “safe” distance would be 1,500 to 2,000 meters away from major freeways. The health risk values 
estimated in this study can be applied to evaluate cumulative health risks. For example, the values can be 
combined with existing screening tools to provide a layer of traffic-related air pollutant concentration and health 
risks that show detailed intra-urban variation. 
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Background and Introduction 
Performance metrics to quantify traffic-related air pollutants and 
exposure disparities are critical for identifying disadvantaged 
populations and developing clean air policies. Currently, California has 
several related screening tools, such as CalEnviroScreen and Healthy 
Place Index. CalEnviroScreen4.0 evaluates a range of environmental 
factors, including drinking water contaminants, pesticide use, solid 
waste sites and facilities, and many other indicators [1]. Among those 
many indicators, ozone, diesel particulate matter (PM), and traffic 
density are highly pertinent to traffic-related air pollutants.  

The Health Disadvantage Index includes diverse non-medical economic, social, political, and environmental factors 
that influence physical and cognitive health. These health determinants (or social determinants of health) form the 
root causes of disadvantage [2]. In 2018, the Health Disadvantage Index was updated and renamed the Healthy 
Place Index. The Healthy Place Index provides overall scores and more detailed data on specific policies that shape 
health, including but not limited to housing, transportation, and education [3]. 

Additionally, the U.S. Environmental Protection Agency (EPA) developed the BenMAP (Community Edition), an 
open-source computer program that can calculate the number and economic value of air-pollution-related 
illnesses and deaths. The software is able to quantify the burden to human health of total air pollution, and the 
potential benefits of policies reducing air pollution by a certain amount. The tool incorporates a database that 
includes the pollutant-concentration-response relationships, population data, and health and economic data 
needed to quantify these impacts [4].  

Recently, Quan examined a range of screening tools used in California and analyzed their ability to guide housing 
and transportation resources [5]. The research found a positive relationship between housing production and 
transit proximate and low vehicle miles traveled (VMT) areas, which can support coordinated land use and 
transportation that help meet state climate and planning objectives. However, none of the maps include indicators 
related to these transportation characteristics that would intentionally direct resources toward those areas. 

InMAP is a recently developed model that offers a new approach to estimating the human health impacts caused 
by air pollutant emissions and how those impacts are distributed among different groups of people [6]. InMAP 
uses annual total emissions as input to calculate annual average concentration of particulate matter 2.5 microns or 
less in width (PM2.5) and the exposure values.  

Vallamsundar et al. proposed a comprehensive modeling framework to assess traffic-related exposure [7]. Several 
limitations include: 

• Aggregation methods are not well defined. 
• The study uses the intake fraction as a metric, which can potentially be biased if evaluating a large 

geographic area. 
• The intake fraction cannot be aggregated. 

These tools generally estimate the overall ambient pollutants or traffic density at the census tract level or grid 
level. However, the tools do not reflect how much of the emissions reach and are inhaled by the localized 
population. For example, in a comparison of two communities in the Port of Long Beach area and Inland Empire, 
the communities may have similar levels of diesel PM emissions in terms of kilograms per day. However, 
depending on the local temperature; wind strength; location of homes, schools, and workplaces; and number of 
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populations by age group; the level of exposure could be much different between the two communities. In this 
study, we attempt to fill in the gaps and address these issues.  

Method and Modeling Experiment 
Our objective was to develop a performance metric to quantify the inhalation of traffic-related air pollutants at 
both mesoscale (e.g., neighborhoods and cities) and macroscale (e.g., census tracts and metropolitan regions). The 
developed metric can assess the inhalation of specific primary traffic-related pollutants. The metric can be 
evaluated for a given population group (e.g., school children, stay-at-home residents, or the workforce), at a given 
microenvironment (e.g., indoor or outdoor), and at a given time span (e.g., a typical work day or the summer 
season). The metric can be readily aggregated and disaggregated at user-defined dimensions for different 
purposes. The metric can also reflect the influence of technology advancement (e.g., autonomous driving or clean 
trucks) and other driving factors.  

To achieve such a goal, we unified the data format and developed an integrated framework. We applied a chaining 
approach to develop the metric as shown in Figure 1 and Figure 2. Figure 1 is also based on the research focus 
chart provided in the CARTEEH strategic plan [8]. 

 
Figure 1. Method flowchart proposed in the study (adapted from CARTEEH [8]). 
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Figure 2. Aggregation dimension proposed in the study (adapted from Hou et al. [9]). 

In this study, we selected northern Orange County and western Riverside County in southern California as the 
study area. Orange County borders the Pacific Ocean, is the third most populated county in the state, and has 
several of the largest job centers in southern California. Riverside County is located east of Orange County and is 
connected with Orange County through a number of freeways and transit systems. The two areas are home to 
more than 4 million people and have an enormous number of VMT per day. Additionally, the two areas have quite 
different urban development patterns and climate conditions. Therefore, it is of great interest to study the traffic-
related air pollution and associated health risks. In this study, 14,951 Orange County census blocks (2.3 million 
population) and 14,044 Riverside County census blocks (1.8 million population) were selected as the study area. 
The blocks that have no residential population were filtered out and not included in this study. 

Traffic Activity and Emissions Modeling 
Traffic activity data (in terms of traffic flow and speed) on roadway links in and around Riverside County and 
Orange County were obtained directly from the Southern California Association of Government Regional 
Transportation Model (SCAG RTM), which is the regional transportation model of the southern California region. 
The data were available for four periods: 

• Morning (6 to 9 a.m.). 
• Midday (9 a.m. to 3 p.m.). 
• Afternoon (3 to 7 p.m.). 
• Nighttime (7 p.m. to 6 a.m.). 

Traffic flow data included separate values for six vehicle types: 

• DA: passenger car, driving alone. 
• SR2: passenger car, shared ride with two persons. 
• SR3: passenger car, shared ride with three or more persons. 
• LHDT: light heavy-duty trucks. 
• MHDT: medium heavy-duty trucks. 
• HHDT: heavy heavy-duty trucks. 

The total flow is the summation of the flow values of all six vehicle types. Traffic speed data have only one value 
that represents the speed for all vehicle types. 
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To estimate traffic emissions, emission factors were obtained from the California Air Resources Board’s EMFAC 
model version 2021 for the fleet composition in Riverside and Orange Counties in 2016. EMFAC is the regulatory 
emission model for California. For example, fine particle (PM2.5) emission factors for speed from 5 mph to 70 mph 
were obtained for multiple vehicle categories in EMFAC, which were then matched with vehicle types in the 
SCAG RTM model according to Table 1. Then the total PM2.5 emission on each roadway link was calculated using 
Equation 1. 

𝐸𝐸𝑖𝑖 = ∑ 𝑞𝑞𝑖𝑖,𝑗𝑗 ∙ 𝑒𝑒(𝑣𝑣𝑖𝑖)𝑗𝑗                   ∀ 𝑖𝑖𝑗𝑗  = 1, 2, 3,…, 743 Equation 1 

where Ei is the total emission on roadway link i (grams), qi,j is the flow of vehicle type j on roadway link i (vehicles 
per hour), and e(vi)j is the emission factor of vehicle type j for the speed on roadway link i (grams per mile). 

The calculation was performed for all roadway links in and around the study area so that the effect of traffic-
related air pollution carried into the study area by wind would be accounted for. 

Furthermore, to develop a performance metric to quantify the inhalation of traffic-related air pollutants, this study 
separated gasoline exhaust and diesel exhaust due to the significant health effects reported for the two. To 
separate gasoline and diesel emissions, this study used VMT data for gasoline-fueled and diesel-fueled vehicles and 
calculated a gasoline emission rate and a diesel emission rate for each roadway link. By separating gasoline and 
diesel emissions, this study was able to apply different health risk factors for gasoline and diesel concentration at a 
receptor. This study reduced the risk of overestimating the health risks due to gasoline emissions and was able to 
view the health risks from the perspectives of both gasoline and diesel emissions.  

Table 1. Vehicle Type Mapping 

This Project SCAG RTM EMFAC2007 Category 
LDV DA, SR2, SR3 LDA, LDT1, LDT2, MDV 

LHDT LHDT LHDT1, LHDT2 
MHDT MHDT MHDT 
HHDT HHDT HHDT 

* Notes: LDV: Light-duty vehicle  LHDT: light heavy-duty trucks  MHDT: medium heavy-duty trucks 
DA: passenger car, driving alone 
SR2: passenger car, shared ride with two persons 
SR3: passenger car, shared ride with three or more persons 

                HHDT: heavy heavy-duty trucks  LDA: light duty automobile  LDT1: light duty truck Class 1  
LDT2: light duty truck Class 2  MDV: medium duty vehicles   
LHDT: light heavy duty truck Class 1  LHDT2: light heavy duty truck Class 2 

Air Pollutant Dispersion Modeling 
Recently, EPA released R-LINE, a research-grade dispersion model for near-roadway assessments. R-LINE is based 
on a steady-state Gaussian formulation and is designed specifically to simulate air dispersion of emissions from line 
sources [10, 11]. Compared to AERMOD, which is one of the air dispersion models preferred/recommended by 
EPA and is required in modeling and analysis for regulatory purposes, R-LINE requires a similar level of data inputs 
but computes much faster—an attribute that is important for the modeling work in this project. In addition, R-LINE 
has a succinct input configuration. Therefore, R-LINE was selected for use in this project. 

R-LINE treats traffic-related emissions as line sources. That is, roadway links are represented by lines in the model, 
and on each link the level of traffic emissions is evenly distributed along the lines. The underlying relationship 
between air pollutant concentration and the line sources in R-LINE can be expressed as in Equation 2. 
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𝐶𝐶(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑓𝑓(𝑄𝑄, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ) Equation 2 

where C(x,y,z) is the emission concentration at a receptor location and Q is the average emission rate of on-road 
vehicles (grams/meter/second) obtained from traffic emission modeling in the previous step. 

For the source location, each line segment’s node coordinates are required. R-LINE provides options for analytical 
solution and numerical integration for concentration calculation. In this study, we chose the analytical solution for 
better performance. Typical meteorological data for R-LINE, such as air temperature, wind speed, wind direction, 
surface friction velocity, Monin-Obukhov length, etc., are available from the South Coast Air Quality Management 
District [12]. 

In regulatory analyses, it is desirable to use the 5-year history of hourly meteorological data to calculate the hourly 
average and maximum concentration in order to capture any extreme concentration values that may result from 
certain meteorological conditions. This adds up to a combination of 5 years times 365 days times 24 hours, which 
is 43,800 hourly meteorological scenarios. However, due to the large number of roadway links (more than 68,000) 
and receptors (28,955) in this project, it would be computationally expensive to calculate hourly concentration for 
that many meteorological scenarios. 

In a previous study, 36 different temporal scenarios were modeled with methods similar to those mentioned, 
where the traffic and meteorological parameters were obtained for the 36 temporal scenarios and traffic-related 
PM2.5 was modeled for 48,000 receptors in the city of Riverside [13]. The concentration between all 36 different 
temporal scenarios were highly correlated, and the R-squared (R2) of the concentration between all the temporal 
scenarios were more than 0.7. This finding shows that if the concentrations are calculated for all receptors for one 
temporal scenario, the set of values can potentially be used to predict concentration for another temporal 
scenario given an appropriate multiplication factor. The data for meteorological parameters are readily available 
from 2012 to 2016. To keep the computation time reasonable, this study selected one typical day in August 2016 
and used the meteorological data at 6:00 p.m. of that day after confirming that no abnormal weather conditions 
were present.  

Exposure Assessment 
Equations 3 and 4 were drawn from the California Office of Environmental Health Hazard Assessment (OEHHA) 
Health Risk Assessment Guidelines and were adjusted with values identified for this study. 

Cancer Risk = CPF × DOSEAIR × ASP × ED/AT × FAH Equation 3 

where: 

• Cancer Risk = total individual excess cancer risk defined as the cancer risk a hypothetical individual faces if 
exposed to carcinogenic emissions from a particular source for specified exposure durations. This risk is 
defined as an excess risk because it is above and beyond the background cancer risk to the population. 
Cancer risk is expressed in terms of risk per million exposed individuals. 

• CPF = inhalation cancer potency factor. 
• ASP = age sensitivity factor (see Table 2). 
• ED = exposure duration. 
• AT = averaging time for lifetime cancer risk. 
• FAH = fraction of time at home (see Table 2). 

DOSEAIR = CAIR × DBR × A × EF Equation 4 



 

6 

where: 

• CAIR = toxic air contaminant concentration from the air dispersion model (µg/m3). 
• DBR = daily breathing rate (see Table 2). 
• A = inhalation absorption factor (usually set as 1). 
• EF = exposure frequency (see Table 2). 

Table 2 provides the OEHHA-recommended values for the various cancer risk parameters, shown in Equations 3 
and 4.  

Table 2. Exposure Assumptions for Cancer Risk Calculations at Residential Receptors 

Receptor Type Fraction of Time 
at Home 

Exposure Frequency 
(Days/Year) 

Age Sensitivity 
Factors 

Daily Breathing Rate 
(L/kg-day) 

Infant Receptors 
3rd trimester 1 350 10 361 
0 to 2 years 1 350 10 1,090 

Child Receptors 
2 to 9 years 1 350 3 631 

9 to 16 years 1 350 3 572 
Adult Receptors 

16 to 30 years 0.73 350 1 261 
30 to 70 years 0.73 350 1 233 

Notes: 
(L/kg-day) = liters per kilogram body weight per day. 
Source: Office of Environmental Health Hazard Assessment, Air Toxics Hot Spots Program Risk Assessment 
Guidelines, 2015. 

To provide a standardized platform for health risk assessment, the Hotspots Analysis and Reporting Program 
(HARP) was developed as a software suite that addresses the programmatic requirements of the Air Toxics Hot 
Spots Program (created by Assembly Bill 2588) [14]. HARP incorporates the information presented in the 2015 Air 
Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. In HARP, users are able to 
select a range of scenarios including type of pollutants, exposure pathway, population, and exposure duration [15]. 
If data are available, cancer risks, chronic risks, and acute risks can be estimated with the HARP software.  

With the cancer risk calculated as shown in Equations 3 and 4 or in HARP, we can estimate the cancer risk from 
multiple traffic-related air pollutants for a certain population under an exposure scenario. Assuming that the 
cancer risks in this study can be added together, Equation 5 can be applied to summarize the health risks. 
Therefore, for certain pollutants, the effects could be synergetic, and Equation 5 needs to be adjusted to reflect 
such effects. 

Risk =  ∑ ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝,𝑡𝑡𝑡𝑡𝑝𝑝  Equation 5 

where riskp,t is the health risk of a certain pollutant p during a duration t. The risks can also be aggregated by 
population groups as needed. 

With the risks calculated as shown in Equations 3 and 4 or in HARP, we estimated the cancer risk that resulted 
from several pollutants based on a time scale. HARP software is designed mainly for regulatory purposes, and the 
exposure duration, such as 9 years, 30 years, and 70 years, for residential receptors is recommended.  
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In this study, HARP was used, and 9-year exposure was selected. Concentration is proportionally related to the 
cancer risks when all other options are the same. In HARP, 1 µg/m3 of diesel exhaust PM is calculated to have a 
cancer risk of 434.5 in 1 million for 9-year exposure starting at the third trimester, and the cancer risk would be 
373 in 1 million for 9-year exposure starting at 30 years old. Unfortunately, gasoline exhaust PM was limited and 
not studied as extensively as diesel gasoline exhaust [16]. For example, Roth et al. found that short-term exposure 
to gasoline exhaust may have no major toxic effects in bronchial epithelial cells and natural killer cells [17]. Since 
HARP does not have data for gasoline exhaust, the gasoline exhaust’s health effects were not estimated with the 
concentration estimation. 

Results and Discussion 
Figure 3 shows the estimated gasoline PM2.5 concentration in the study area. Dark gray marks census block 
centroids that have higher gasoline exhaust PM2.5. The highlighted points represent the top 1 percent of the 
estimated concentration. Since the selected Orange County area is more densely populated than the selected 
Riverside County area, there are darker census block centroids in Orange County than in Riverside County. 

 
Figure 3. Gasoline exhaust PM2.5 concentration modeling for 2016 (highlighted points represent the top 

1 percent of the concentration). 

Figure 4 shows the estimated diesel PM2.5 concentration in the study area, which shows a pattern similar to that in 
Figure 3. This was anticipated because major freeways that carry the most gasoline-fueled vehicles are also heavily 
traveled by diesel-fueled vehicles. Therefore, the communities near major freeways are mostly impacted. The 
highlighted points represent the top 1 percent of the estimated concentration. The highlighted hot spots are the 
top 1 percent due to a number of reasons, including the traffic volume, traffic speed, diesel vehicle ratio, and 
micrometeorology data applied in the experiment. This does not necessarily mean that the traffic-related air 
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pollutants at the highlighted points are always at higher concentration than at other points. However, this does 
indicate that the corresponding census blocks or tracts are heavily impacted by traffic-related air pollutants.  

 
Figure 4. Diesel exhaust PM2.5 concentration modeling for 2016 (highlighted points represent the top 1 percent 

of the concentration). 

To compare the overall PM2.5 concentration between the selected areas, Figure 5 shows the box plot of the 
gasoline PM2.5 and diesel PM2.5 between selected areas. The Orange County blocks generally have higher primary 
traffic-related PM2.5 concentration than the Riverside County blocks do. Within selected Orange County blocks, the 
gasoline and diesel PM2.5 concentrations are comparable. However, within selected Riverside County blocks, the 
average diesel PM2.5 concentration is slightly higher than the average gasoline PM2.5 concentration. The 
comparison results were anticipated because the selected Orange County area has more blocks near the road than 
the selected Riverside County area does, and this study provides a quantitative comparison.  
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Figure 5. Box plot of estimated gasoline and diesel PM2.5 concentration at selected Orange County (OC) and 

Riverside County (RIV) census block centroids. 

This study only models the traffic-related exhaust emissions. Considering ambient air quality, the total pollutant 
concentration can be more substantial than the traffic-related exhaust emissions analyzed in this study, especially 
for inland California, where secondary PM and ozone pollution cause more health concern than primary air 
pollutants. 

With the PM2.5 concentration calculated, the health risk can be assessed using the previously described methods. 
Using HARP, we found that the cancer risks are linearly related to diesel PM2.5 concentration, provided that all 
other options are the same. A diesel exhaust PM of 1 µg/m3 was calculated to cause a cancer risk of 434.5 in 
1 million for 9-year exposure starting at the third trimester. This value was applied to estimate cancer risks 
resulting from traffic-related primary diesel PM2.5 as shown in Figure 6. The gasoline PM2.5 health risks were not 
evaluated in this study because the risk factors were not available yet. However, for the future work, the gasoline 
PM2.5 health risks can also be assessed given more health studies or using other surrogates such as benzene or 
formaldehyde.  

The health risk values estimated in Figure 6 can be combined with screening tools to provide more detailed 
resolution. If secondary PM and ozone concentration can be mapped at a regional scale, this study can provide a 
layer of concentration and health risks that shows detailed intra-urban variation.  
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Figure 6. Estimated cancer risks based on 9-year diesel PM2.5 exposure starting at the third trimester. 

Conclusions and Recommendations 
The cancer risks shown in Figure 6 are limited to traffic-related exhaust emissions based on a range of 
assumptions. Figure 6 provides quantitative health risk values among residential communities. For example, the 
map shows that to limit cancer risk within the 75th percentile (14.5 in a million) of the study area, a “safe” distance 
would be 1,500 to 2,000 meters away from major freeways in a number of neighborhoods. While the California Air 
Resource Board recommends sensitive receptors, such as homes and schools, be located 300 meters away from 
major sources such as freeways [18], this study shows that a “safe” distance could be much more than 300 meters, 
given various other pollutants are not included in this study.  

Therefore, more work is needed to evaluate the health risks related to traffic sources and measures that can help 
communities reduce such health risks. Future work can be directed to perform cohort health studies with 
modeling studies, explore technology breakthroughs that can significantly reduce exhaust emissions, and evaluate 
mitigation measures such as household air filters.  

References 
 
1. California Office of Environmental Health Hazard Assessment (OEHHA). CalEnviroScreen 4.0. 

https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40. Accessed June 25, 2022. 

 

https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40


 

11 

 
2. Public Health Alliance of Southern California Leadership. California Health Disadvantage Index. 

https://phasocal.org/ca-hdi/. Accessed June 25, 2022. 

3. Public Health Alliance of Southern California Leadership. California Healthy Place Index. 
https://map.healthyplacesindex.org/. Accessed June 25, 2022. 

4. U.S. Environmental Protection Agency. Environmental Benefits Mapping and Analysis Program—Community 
Edition (BenMAP-CE). https://www.epa.gov/benmap. Accessed June 25, 2022. 

5. Quan, S. California Government Screening Maps: An Investigation into Geographic Prioritization in Support of 
State Climate and Planning Goals. 2021. 

6. Tessum, C. W., Hill, J. D., and Marshall, J. D. InMAP: Intervention Model for Air Pollution. 
http://spatialmodel.com/inmap/. Accessed June 25, 2022. 

7. Vallamsundar, S., Lin, J., Konduri, K., Zhou, X., and Pendyala, R.M. A Comprehensive Modeling Framework for 
Transportation-Induced Population Exposure Assessment. Transportation Research Part D: Transport and 
Environment, 46, 2016, pp. 94–113. 

8. Center for Advancing Research in Transportation Emissions, Energy, and Health. Center for Advancing 
Research in Transportation Emissions, Energy, and Health Strategic Plan. July 2018. 
https://www.carteeh.org/wp-content/uploads/2018/07/CARTEEH-Strategic-Plan.pdf. Accessed June 25, 2022. 

9. Hou, Y., Garikapati, V., Nag, A., Young, S. E., and Grushka, T. Novel and Practical Method to Quantify the 
Quality of Mobility: Mobility Energy Productivity Metric. Transportation Research Record, 2673(10), 2019, 
pp. 141–152. 

10. Snyder, M. G., and Heist, D. K. User’s Guide for R-LINE Model Version 1.2. 2013. 
https://www.cmascenter.org/r-line/documentation/1.2/RLINE_UserGuide_11-13-2013.pdf. Accessed June 28, 
2022. 

11. Heist, D., Isakov, V., Perry, S., Snyder, M., Venkatram, A., Hood, C., Stocker, J., Carruthers, D., Arunachalam, S. 
and Owen, R. C. Estimating Near-Road Pollutant Dispersion: A Model Inter-comparison. Transportation 
Research Part D: Transport and Environment, 25, 2013, pp. 93–105. 

12. South Coast Air Quality Management District. Data for AERMOD. https://www.aqmd.gov/home/air-
quality/meteorological-data/data-for-aermod. Accessed November 1, 2022. 

 

13.  California Air Resource Board. Hot Spots Analysis and Reporting Program. https://ww2.arb.ca.gov/our-
work/programs/hot-spots-analysis-reporting-program/about. Accessed November 1, 2022. 

14. California Air Resource Board. HARP Risk Assessment Standalone Tool. 
https://ww2.arb.ca.gov/resources/documents/harp-risk-assessment-standalone-tool. Accessed November 1, 
2022. 

 

https://phasocal.org/ca-hdi/
https://map.healthyplacesindex.org/
https://www.epa.gov/benmap
http://spatialmodel.com/inmap/
https://www.carteeh.org/wp-content/uploads/2018/07/CARTEEH-Strategic-Plan.pdf
https://www.cmascenter.org/r-line/documentation/1.2/RLINE_UserGuide_11-13-2013.pdf
https://www.aqmd.gov/home/air-quality/meteorological-data/data-for-aermod
https://www.aqmd.gov/home/air-quality/meteorological-data/data-for-aermod
https://ww2.arb.ca.gov/our-work/programs/hot-spots-analysis-reporting-program/about
https://ww2.arb.ca.gov/our-work/programs/hot-spots-analysis-reporting-program/about
https://ww2.arb.ca.gov/resources/documents/harp-risk-assessment-standalone-tool


 

12 

 
15.  McDonald, J. D., Reed, M. D., Campen, M. J., Barrett, E. G., Seagrave, J., and Mauderly, J. L. Health Effects of 

Inhaled Gasoline Engine Emissions. Inhalation Toxicology, 19(sup1), 2007, pp. 107–116. 

16.  Roth, M., Usemann, J., Bisig, C., Comte, P., Czerwinski, J., Mayer, A. C., Beier, K., Rothen-Rutishauser, B., Latzin, 
P., and Müller, L. Effects of Gasoline and Ethanol-Gasoline Exhaust Exposure on Human Bronchial Epithelial 
and Natural Killer Cells in Vitro. Toxicology in Vitro, 45, 2017, pp. 101–110. 

17. California Air Resource Board. Air Quality and Land Use Handbook: A Community Health Perspective. 2005. 


	Disclaimer
	Executive Summary
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Background and Introduction
	Method and Modeling Experiment
	Traffic Activity and Emissions Modeling
	Air Pollutant Dispersion Modeling
	Exposure Assessment

	Results and Discussion
	Conclusions and Recommendations
	References

